

CERTIFIED TEST REPORT

EVALUATION OF DowAksa CarbonWrap[™] FRP STRENGTHENING COMPOSITE SYSTEMS FOR CONCRETE ACCEPTANCE CRITERIA - AC125

Report Number: R-5.10_DOA_13-12-11.2

REVISION 2

September 15, 2016

University of Miami, Structures and Materials Laboratory - ISO 17025 Accredited Laboratory -Department of Civil, Architectural and Environmental Engineering 1251 Memorial Drive, McArthur Engineering Building 108 Coral Gables, FL, 33146

> Phone: 305-284-3391; Fax: 305-284-3492 Email: f.decasoybasalo@umiami.edu

Controls:	
Superseded Report	R-5.10_DOA_13-12-11.1
Reason for Revision	Addition of results 3000hrs aged interlaminar shear strength.
Effective Date	September 15, 2016
Superseded Report	R-5.10_DOA_13-12-11
Reason for Revision	Addition of results: Void content for C20T and Alkali Soil Resistance.
Effective Date	August 22, 2016
Superseded Report	New report
Reason for Revision	n/a
Effective Date	July 19, 2016

Test Report Approval Signatures:				
Quality review Approval	I indicate that I have reviewed this Test Report and agree with the contents it presents, and find it meets all applicable laboratory requirements and policies. I approve for its release to the customer.			
	Name: Signature:	Francisco De Caso		
	Date:	September 15, 2016		
Technical review Approval	I indicate that I contents it pres and policies. I a	have reviewed this Test Report and agree with the technical ents, and find it meets all applicable laboratory requirements approve for its release to the customer.		
	Name:	Antonio Nanni		
	Signature:	Paul Nom:		
	Date:	September 15, 2016		

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1.	INTRODUCTION	4
2.	TESTING OF REPRESENTATIVE PRODUCTS	6
3.	TEST DATA	7
4.	PRODUCT PREPARATION AND INSTALLATION	8
5.	TENSILE PROPERTIES – ASTM D3039	13
6.	COEFFICIENT OF THERMAL EXPANSION – ASTM E831	19
7.	CREEP RUPTURE – ASTM D2990	25
8.	VOID CONTENT – ASTM D3171	30
9.	GLASS TRANSITION TEMPERATURE – ASTM E1640	34
10.	COMPOSITE INTERLAMINAR SHEAR STRENGTH – ASTM D2344	38
11.	BOND STRENGTH: TENSION – ASTM D7234	44
12.	BOND STRENGTH: SHEAR – LAB METHOD	50
13.	FREEZING AND THAWING	56
14.	AGING: WATER RESISTANCE – ASTM D2247	61
15.	AGING: SALT WATER RESISTANCE – ASTM D1141	68
16.	AGING: ALKALI RESISTANCE– ASTM C581	75
17.	AGING: DRY HEAT RESISTANCE- ASTM D3045	82
18.	EXTERIOR EXPOSURE – ASTM D2565	89
19.	FUEL RESISTANCE – ASTM C581	93
20.	ALKALINE SOIL RESISTANCE – ASTM D3083	98
21.	INTERIOR FINISH – ASTM E84	102
22.	COLUMN: FLEXURAL TEST	103
23.	COLUMN: SHEAR TEST	104
24.	COLUMN: AXIAL TEST	105
25.	WALL: FLEXURAL TEST	106
26.	WALL: SHEAR TEST	107

1. INTRODUCTION

1.1. PURPOSE

The purpose of this document is to a test plan to develop an ICC-ES Evaluation Report for file #13-12-11 for the applicant DowAksa CarbonWrap[™] for Concrete Strengthening Using CarbonWrap[™] Fiber-Reinforced Polymer Composite System that includes two carbon fabric materials (CFU-10T, CFU-20T) in combination with a polymer matrix (Carbon Bond 300 HT). This document presents the proposed qualifying test plan to evaluate the mechanical properties and environmental durability of the FRP strengthen systems to obtain an Evaluation Service Report (ESR). The test plan is designed according to the requirements of the ICC Evaluation Service (ICC-ES) Acceptance Criteria for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer Composite Systems (AC 125).

1.2. STRUCTURES AND MATERIALS LABORATORY (SML)

All tests presented in this report, including material sampling and specimen preparation, were performed by and under the supervision of the University of Miami, College of Engineering, Structures and Materials Laboratory, herein referred to as SML, also technical representative of file #13-12-11. This testing laboratory has met the requirements of the International Accreditation Service (IAS) AC89 (Accreditation Criteria for Testing Laboratories), has demonstrated compliance with ANS/ISO/IEC Standard 17025:2005, "General requirements for the competence of testing and calibration laboratories, and has been accredited for the test methods listed in the approved scope of accreditation under Testing Laboratory # TL-478.

1.3. DESCRIPTION OF PRODUCTS UNDER EVALUATION

The components of the Fiber-Reinforced Polymer (FRP) composite systems considered for evaluation and tested as per AC125-15 are summarized as follows:

1.3.1. <u>CFU-10T</u>

Uni-directional carbon fiber sheet with a minimum nominal fiber density of 340 gsm (10 oz/yd²).

1.3.2. <u>CFU-20T</u>

Uni-directional carbon fiber sheet with a minimum nominal fiber density of 680 gsm (20 oz/yd²).

1.3.3. <u>Carbon Bond 300 HT</u>

A two part 100% solids polymer matrix resin system used to saturate the fiber sheets composed of part A, 300 HT-A; and part B, 300 HT-B.

Refer to Table 1.1 and Figure 1.1 for the summary of the FRP systems under evaluation and the reference name of the systems within this report.

Table 1.1 - Summary of FRF	systems under evaluation	with the report reference ID
----------------------------	--------------------------	------------------------------

FRP composite systems under evaluation (fiber sheet + resin)	Fiber sheet type	Report Reference Name	
CFU-10T + Carbon Bond 300 HT		C10T	
CFU-20T + Carbon Bond 300 HT	Uni-directional	C20T	

(a)

1.4. CLIENT INFORMATION

The test report has been requested by the applicant to the ICC-EC:

DowAksa CarbonWrap[™] Attn: Hamid Saadatmanesh, Ph.D., P.E. Global Director; Infrastructure Division 2820 E. Ft Lowell Rd. Tucson, AZ 85718, USA Office (520) 292-3109; Mobile (520) 360-0118; hamid@dow-aksa.com

2. TESTING OF REPRESENTATIVE PRODUCTS

2.1. PRODUCT SAMPLING

2.1.1. <u>Sampling Guidelines</u>

All the products tested and reported herein, were sampled in accordance with section 3.1 of AC85 by a third party accredited entity

2.1.2. <u>Sampling Data Report</u>

A full detailed sampling report containing the sampling criteria, method, selection, and product information is described by the third party as indicated in document number **DA-1.1_10.06.15_TUS**.

2.2. ACKNOWLEDGED AND INSPECTION OF PRODUCTS

Upon arrival of the products for evaluation to the testing laboratory, the packages were acknowledged and identified to account for all the products and their batch numbers for quality assurance purposes. All products were then individually inspected to ensure validity for testing, free of damage, contamination or other criteria deviating from being representative of the standard manufactured products as initially sampled based on SML standard operating procedures.

3. TEST DATA

3.1. RAW DATA

All the test results presented herein are linked through unbroken chain to the raw data files recorded on the day of the test. Details regarding raw data can be found in the technical test record completed at the time of the tests. Raw data is available upon request.

3.2. ANALYZED DATA

Analyzed data are obtained directly from the recorded raw data during testing, from which the test results are presented. This report contains analyzed tabulated data results of each test assessment. Additionally, as part of the standard operating procedures and quality assurance of the SML, intermediate checks of the data analysis are performed at various stages of the data analysis process reducing the possible analysis errors. Fully analyzed data files are available upon request.

3.3. REPORT PRESENTATION OF TEST RESULTS

Test results are presented in the subsequent chapters of this report (indicated with X in Table 3.1), structured in the following chapter sub-sections:

Sub-chapter	Title	Description
X.1	TEST SUMMARY	Contains test standard references, objectives, product under evaluation, test location, test technician and reference to test additional information.
X.2	TEST MATRIX	Contains number of specimens reported, specimen ID nomenclature and test matrix table.
X.3	SPECIMEN PREPERATION	Contains specimen size, layout (if applicable), and relevant specimen preparation procedures and conditioning parameters as needed.
X.4	TEST SET-UP	Contains test set-up information as well as the rate and method of loading.
X.5	TEST RESULTS	Contains a brief test summary, modes of failure, calculations and/or graphs results (if applicable), and complete tabulated results for all test specimens.

Fable 3.1 – Chapte	r sub-sections structure
--------------------	--------------------------

4. PRODUCT PREPARATION AND INSTALLATION

4.1. PRODUCT PREPARATION

4.1.1. <u>Mixing Method</u>

Mechanical mixing of the saturating resin Carbon Bond 300 HT was implemented following the manufacturer's specifications, where mixing of the approved resin was performed by trained personnel, as seen in Figure 4.1. The two part resin was mixed completely until a smooth, uniform streak-free consistency was reached.

4.1.1. <u>Mixing ratio</u>

Carbon Bond 300 HT part A and part B of the epoxy resin were mixed together in agreement with the mixing ratio suggested by the manufacturer's instructions by weight as follows:

> 100 part A to 32.4 part B

Figure 4.1 – Mixing of Carbon Bond 300 HT

4.2. PRODUCT INSTALLATION

4.2.1. Installation Approval

The preparation and production of FRP panels for specimen testing of the products under evaluation was performed by trained personnel. The following section describes the process to produce the panel specimen for testing.

4.2.2. <u>Panel Specimen Preparation without Substrate</u>

Resin mix and fiber impregnation: The designated saturating epoxy resin is mixed using mechanical means. The pre-cut fiber sheet is placed on a flat surface and resin poured over it, while using a flexible spatula so spread the resin over the fiber sheet. A ribbed roller is then used to saturate the fiber sheet by rolling in the fiber direction. The process is repeated on the other side of the fiber sheet. The saturate fiber sheet is them placed on an adhesion free film and rolled to ensure fibers are aligned. Another non-stick sheet is used to sandwich the FRP panel ensuring

a flat panel is produced. A plastic trowel is then used to remove excess resin and air bubbles. Panels were left to cure for a minimum of 24 hours before removing the non-stick sheets. Discreet coupons were then obtain from the panels for testing as seen in Figure 4.2.

(f) (g) Figure 4.2 – Preparation of FRP panels by manual wet layup process

4.2.3. FRP Installation Procedure with Substrate

The procedure to install the FRP strengthening systems under evaluation for tests considering a concrete substrate, followed the same impregnation process as described before. Full installation was performed by trained SML personnel. Before the installation of the FRP strengthening system, the concrete substrate surface was prepared to ensure that a minimum surface roughness of CPS 3 as defined by ICRI was achieved. The prepared concrete surface was primed using the Carbon Bond 300 HT with a brush. The saturated fiber sheet was then installed on the prepared and primed substrate by placing it in the desired location. The FRP sheet was then rolled in the fiber direction with a ribbed roller ensuring air bubbles and fiber alignment was achieved. Specimens and allowed to cure for 72 hours prior to initiation of any testing, as seen in Figure 4.3

Figure 4.3 – FRP system installation on concrete substrate.

4.3. QUALITY CONTROL

Quality control checks where performed throughout the processes of specimen preparation and installation on substrate. These checks included: proper surface preparation, ensuring fiber sheet alignment, removal of air pockets by use of ribbed roller, checking saturation of fiber sheet, removal of excess resin, monitoring environmental conditions and proper trained personnel.

4.4. PRODUCT HANDLING

All the products were handled based on the manufacturer's specifications and laboratory internal procedures, where handling and special storage considerations where provided as needed before products where used to fabricate specimens. All products have a unique batch number recorded during sampling, this number was tracked to individual test specimens as referenced in this report.

4.5. SPECIMEN ID NOMENCLATURE

All test specimens for mechanical and physical material tests have been uniquely labeled and identified for quality and traceability purposes using the following format:

CCC PPPP MMM EE DD XXX

where, CCC refers to company name, PPPP refers to the products under evaluation. MMM refers to the mechanical property and test type, EE refers to the type of exposure, DD refers to the duration of the exposure and/or test direction, and XXX is the sample repetition number. The detailed nomenclature is reported in Table 4.1.

All test specimens for structural tests have been uniquely labeled and identified for quality and traceability using the format:

CCC PPPP SSS M Y XXX,

where CCC is the company name, PPPP is the product, SSS is the structural element and test type, M is the type and nominal strength of the substrate material, Y is the number of applied plies to the structural element, and XXX is the sample number. The detailed nomenclature is reported in Table 4.2.

Parameter description	Detail	ID
Company name	DowAksa CarbonWrap™	DOA
Product	CFU-10T + Carbon Bond 300 HT	C10T
	CFU-20T + Carbon Bond 300 HT	C20T
	Carbon Bond 300 HT	CBHT
Mechanical property	Tensile Strength	TNS
	Glass Transition Temperature	
	Coef. of Thermal Expansion	
	Creep Rupture	
	Void content	
	Interlaminar shear strength	ISS
	Bond Strength Tension Concrete	BTC
	Bond Strength Shear Concrete	BSC
Table 4.1 continuation - Spe	ecimen identification for characterization tes	ts
Parameter description	Detail	ID

Table 4.1 – Specimen identification for characterization tests

Exposure	None (control/benchmark tests)		CC
	Water Resistance		WR
	Saltwater Resistance		SW
	Alkaline Resistance		AR
	Dry Heat Resistance		DH
	Freezing and Thawing		FT
	Fuel Resistance		FR
	Exterior Exposure		EE
Exposure duration/ Test direction	1,000 hrs		01
	2,000 hrs		02
	3,000 hrs		03
	10,000 hrs		10
	Test direction relative to fiber sheet:	0°	00
		90°	90

Table 4.2 – Specimen identification for structural tests				
Parameter description Detail ID				
Company name	DowAksa CarbonWrap™	DOA		
Product	CFU-10T + Carbon Bond 300 HT	C10T		
	CFU-20T + Carbon Bond 300 HT	C20T		
Structural element	Flexural Column	FLC		
	Shear Column	SHC		
	Axial Column	AXC		
	Flexural Wall	FLW		
	Shear Wall	SHW		
	Fire Resistance Construction	FRC		
Substrate material	Low strength concrete	L		
	High strength concrete	Н		
	Concrete Masonry Unit (CMU)	U		
FRP strengthening level	0 ply (control/benchmark)	0		
	Number of plies on element	#		

5. TENSILE PROPERTIES – ASTM D3039

5.1. TEST SUMMARY

5.1.1. <u>AC125 Section/s</u>

Section 5.8, Table 2 for Physical and Mechanical Properties of FRP Composite Materials.

5.1.2. <u>Reference Standard/s</u>

ASTM D3039/D3039M – 14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

5.1.3. <u>Test Objective</u>

To determine the tensile properties in the fiber direction for the FRP systems under evaluation as a benchmark (without any aging or environmental exposure). Average properties include experimental tensile chord modulus of elasticity, ultimate tensile stress and ultimate tensile strain (elongation).

5.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric with Carbon Bond 300 HT resin (tested in the fiber direction: 0°). Note testing for CFU-20T has been provided.

5.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

5.1.6. <u>Laboratory Technician/s</u>

Tais Hamilton and Andrea Correa.

5.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-D3039-DOA.

5.2. TEST MATRIX

5.2.1. <u>Specimen Number</u>

A total of 20 tests are reported, refer to Table 5.1.

5.2.2. Specimen ID Nomenclature

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

5.2.3. <u>Test Matrix Table</u>

Table 5.1 – Test matrix for tensile testing coupon specimens (no aging).					
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)	
DOA_C10T_TNS_CC_001 to 010	Style#	A: Batch# D553G3O081 and GMID# 97000852	02.01.16	03.15.16	
DOA_C10T _TNS_CC_011 to 020	1286/01/00	B: Batch# D553G29000 and GMID#97000847	02.01.10	03.21.16	

5.3. SPECIMEN PREPARATION

5.3.1. <u>Specimen Size</u>

Nominal specimen dimensions are summarized in Table 5.2, including length and thickness. Computed average area is reported in Table 5.5 of this document.

Table 5.2 – Tensile specimen nominal dimensions					
Specimen ID	Length		Thickness		
Specifien ID	mm	in.	mm	in.	
DOA_C10T_TNS_EE	254.0	10.0	0.533	0.021	

5.3.2. Specimen Layout

Specimens were obtained from manually fabricated FRP panels.

5.3.3. <u>Preparation Procedure</u>

The specimens were cut to the prescribed dimensions using a high precision diamond blade saw from different randomly selected panels, as prepared and referenced in Section 4.2.2. Tabs were installed as indicated in ASTM D3039 by laboratory personnel after sanding the ends of the coupon specimens.

5.3.4. <u>Conditioning Parameters</u>

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C ($73 \pm 3^{\circ}$ F) and $60 \pm 5^{\circ}$ relative humidity, for at least 24 hrs prior testing.

5.4. TEST SET-UP

5.4.1. <u>Set-up</u>

Uniaxial tensile load was applied to all specimens. Testing for the specimens was performed using a hydraulic type universal test frame with a maximum capacity of 100 kN (22 kip). Tensile load was measured with the internal load cell of each frame in compliance with ASTM E4-10 (Standard Practice for Force Verification of Testing Machines), while the extension (elongation) of the specimen was measured using a Class B-2 clip on extensometer in accordance to ASTM E83-10a (Standard Practice for Verification and Classification of Extensometer Systems), with a 50 mm (2.0 in.) gauge length, placed at mid-length of the coupon specimen. The extensometer

was removed half way during the test to avoid damage of the instrument. Specimens were gripped with hydraulic wedge type grips at a pressure of 11.7 MPa (1700 psi). The test set up is shown is Figure 5.1. All data was gathered using a National Instruments data acquisition system at a rate of 100 Hz.

Figure 5.1 - Tensile test set-up

5.4.2. Rate and Method of Loading

Load was applied in displacement control to effect a near constant strain rate in the gauge section until failure at a constant frame head displacement of 1.3 mm/min (0.05 in./min), producing failure within 1 to 10 minutes, as per ASTM D3039 requirements.

5.5. TEST RESULTS

5.5.1. <u>Results Summary</u>

All specimens behaved linear elastically until failure. Based on the experimental tests presented herein the average ultimate tensile strength (F^{tu}), the computed average ultimate tensile strain (ϵ_u), and the average chord modulus of elasticity (E^{chord}) for the products under evaluation were found to be as summarized in Table 5.3.

Table 5.3 – Average result for tensile specimens per ASTM D3039									
ID	P ^{max} / W		F ^{tu}		ευ	E ^{chord}			
	kN/mm	lbs/in.	MPa	ksi	%	GPa	Msi		
DOA_C10T_TNS_CC	0.752	4290	1408	204.3	1.56	90.41	13.12		

5.5.2. <u>Modes of Failure</u>

Individual specimen failure modes are reported in the tabulated results section of this document, Figure 5.2 shows the representative failure mode for each system.

(a) (b) Figure 5.2 – Representative longitudinal splitting 'SGM' (a) and angled 'AGM' (b) failure modes.

5.5.3. <u>Calculations</u>

The results reported herein have been computed as per ASTM D3039 and summarized in Table 5.5. Note that the results have been calculated using the computed area based on average of three specimen width measurements and nominal thickness.

Symbol	Parameter	Description
P ^{max}	Maximum force at failure	Peak load recorded during test.
A	Average cross-section area	Cross-section area as reported in Table 5.5, based on nominal thickness.
F ^{tu}	Ultimate tensile strength	$F^{tu} = P^{max} / A$
ε _u	Computed ultimate strain, based on extensometer measurement	Strain based on the intersection of the computed chord modulus and ultimate tensile strength, equating to the ratio between the ultimate tensile strength and the tensile chord modulus
Echord	Tensile chord modulus of elasticity, based on strain gauge measurement	Difference in applied tensile stress between the 1000 and 3000 $\mu\epsilon$ points ($\Delta\sigma$); divided by the difference between the two strain points, nominally 0.002 ($\Delta\epsilon$) as measured $E^{chord} = \Delta\sigma/\Delta\epsilon$

5.5.4. <u>Tabulated Results</u>

Table 5.5 contains the tabulated summary results for the products under evaluation. The table includes: average width based on three measurements (W); average nominal cross-sectional area based on three measurements of specimen width multiplied by a nominal thickness (A); experimental maximum tensile force (P^{max}); ultimate tensile strength (F^{tu}); chord modulus of elasticity (E^{chord}); computed ultimate tensile strain (ε_u); and failure mode as per ASTM D3039 FIGURE 4. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 5.5 - Tabulated results for tensile test for CFU-101, per ASTM D3039														
Specimen	V	N	1	4	P	nax	P ^{max}	4/W	F	tu	Ecl	hord	ευ	Mode
ID	mm	in.	mm²	in²	kN	lbs	kN/mm	lbs/in.	MPa	ksi	GPa	Msi	%	failure
DOA_C10T_TNS_CC_001	25.91	1.020	13.82	0.021	18.67	4195	0.721	4113	1350	195.8	88.57	12.85	1.52	SGM
DOA_C10T_TNS_CC_002	28.12	1.107	15.00	0.023	20.60	4630	0.733	4182	1373	199.2	90.91	13.19	1.51	SGM
DOA_C10T_TNS_CC_003	28.04	1.104	14.96	0.023	20.50	4606	0.731	4172	1370	198.7	87.22	12.66	1.57	SMG
DOA_C10T_TNS_CC_004	27.00	1.063	14.40	0.022	20.16	4530	0.747	4262	1399	202.9	95.15	13.81	1.47	AGM
DOA_C10T_TNS_CC_005	27.53	1.084	14.69	0.023	20.51	4610	0.745	4253	1396	202.5	91.18	13.23	1.53	LGM
DOA_C10T_TNS_CC_006	27.61	1.087	14.73	0.023	20.18	4535	0.731	4172	1370	198.7	86.59	12.56	1.58	SGM
DOA_C10T_TNS_CC_007	25.48	1.003	13.59	0.021	18.66	4193	0.732	4180	1373	199.1	90.10	13.07	1.52	GSM
DOA_C10T_TNS_CC_008	28.14	1.108	15.01	0.023	20.21	4541	0.718	4098	1346	195.2	90.01	13.06	1.49	LGM
DOA_C10T_TNS_CC_009	27.23	1.072	14.52	0.023	20.81	4676	0.764	4362	1432	207.7	87.76	12.73	1.63	AGM
DOA_C10T_TNS_CC_010	26.54	1.045	14.16	0.022	18.75	4213	0.706	4032	1324	192.0	90.28	13.10	1.47	AGM
DOA_C10T_TNS_CC_011	26.72	1.052	14.25	0.022	20.47	4601	0.766	4374	1436	208.3	90.37	13.11	1.59	SGM
DOA_C10T_TNS_CC_012	26.24	1.033	14.00	0.022	20.98	4714	0.799	4563	1498	217.3	93.07	13.50	1.61	AGM
DOA_C10T_TNS_CC_013	24.77	0.975	13.21	0.020	21.08	4737	0.851	4858	1595	231.4	95.33	13.83	1.67	SGM
DOA_C10T_TNS_CC_014	26.77	1.054	14.28	0.022	20.00	4494	0.747	4264	1400	203.0	91.18	13.23	1.53	SGM
DOA_C10T_TNS_CC_015	25.70	1.012	13.71	0.021	20.39	4583	0.793	4529	1487	215.7	92.08	13.36	1.61	SGM
DOA_C10T_TNS_CC_016	27.84	1.096	14.85	0.023	20.39	4582	0.732	4181	1373	199.1	89.20	12.94	1.54	AGM
DOA_C10T_TNS_CC_017	26.82	1.056	14.31	0.022	19.00	4269	0.708	4043	1327	192.5	86.50	12.55	1.53	SGM
DOA_C10T_TNS_CC_018	25.70	1.012	13.71	0.021	19.93	4479	0.775	4426	1453	210.8	88.12	12.79	1.65	AGM
DOA_C10T_TNS_CC_019	27.84	1.096	14.85	0.023	20.39	4583	0.733	4182	1373	199.1	87.85	12.75	1.56	AGM
DOA_C10T_TNS_CC_020	25.63	1.009	13.67	0.021	20.41	4587	0.796	4546	1493	216.5	96.86	14.05	1.54	LGM
Average	26.78	1.054	14.29	0.022	20.10	4518	0.752	4290	1408	204.3	90.41	13.12	1.56	
S _{n-1}	1.01	0.040	0.54	0.001	0.74	167	0.037	208	68	9.9	2.93	0.43	0.06	
CV((%)	3.8	3.8	0.4	3.8	3.7	3.7	4.9	4.9	4.9	4.9	3.2	3.2	3.7	

6. COEFFICIENT OF THERMAL EXPANSION – ASTM E831

6.1. TEST SUMMARY

6.1.1. <u>AC125 Section/s</u>

Section 5.8, Table 2 for Physical and Mechanical Properties of FRP Composite Materials.

6.1.2. <u>Reference Standard/s</u>

ASTM E831 – 13, Standard test method for linear thermal expansion of solid materials by thermomechanical analysis.

6.1.3. <u>Test Objective</u>

Determine, by means of thermomechanical analysis (TMA) technique, the average apparent coefficient of linear thermal expansion (CTE) of the materials under evaluation in the different orthogonal directions.

6.1.4. <u>Product/s Under Evaluation</u>

CFU-10T and CFU-20T fabrics with Carbon Bond 300 HT resin, (tested in the fiber direction: 0° and perpendicular to the fiber direction: 90°).

6.1.5. <u>Test Location</u>

Advanced Plastic & Material Testing, Inc., 42 Dutch Mill Road, Ithaca, NY 14850.

6.1.6. <u>Laboratory Technician/s</u>

ΒK

6.2. TEST MATRIX

6.2.1. <u>Specimen Number</u>

A total of 10 tests are reported per product under evaluation, refer to Table 6.1, where five tests were performed in each orthogonal direction relative to the fiber direction.

6.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

6.2.3. <u>Test Matrix Table</u>

Table 6.1– Test matrix for CTE specimens (no aging).									
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)					
DOA_C10T_CTE_CC_00_ 001 to 005	Style#	A:		06.23.16					
DOA_C10T_CTE_CC_90_ 001 to 005	1286/01/00	Batch#D553G3O081 and GMID# 97000852	05.06.16	06.24.16					
DOA_C20T_CTE_CC_00_ 001 to 005	Style#	B: Batch#D553G29000	05.00.10	06.22.16					
DOA_C20T_CTE_CC_90_ 001 to 005	1167/01/06	and GMID#97000847		06.23.16					

6.3. SPECIMEN PREPARATION

6.3.1. <u>Specimen Size</u>

Nominal square specimen dimensions were 13 mm (0.51 in.) in length/width and 3 mm (0.12 in.) in thickness.

6.3.2. <u>Preparation Procedure</u>

The specimens were cut to the prescribed dimensions from a multi-ply panel as prepared and referenced in Section 4.2.2.

6.4. TEST SET-UP

6.4.1. <u>Set-up</u>

A TMA Q400em thermomechanical analyzer was used to perform the tests, on a 3 mm diameter expansion probe with a 0.05 N force.

6.4.2. Rate and Method of Loading

The heating rate was 5°C/min, in Nitrogen (UHP Grade). Purge flow rate was 50 cubic centimeters per minute.

6.5. TEST RESULTS

6.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average apparent coefficient of linear thermal expansion (α_m) of the materials under evaluation without any aging or exposure conditioning are summarized in Table 6.2.

Specimon ID	α _m			
Specimen iD	<i>μm/m/</i> °C	µin./in./·°F		
DOA_C10T_CTE_CC_00	3.9	2.2		
DOA_C10T_CTE_CC_90	58.5	32.5		
DOA_C20T_CTE_CC_00	2.1	1.2		
DOA_C20T_CTE_CC_90	56.8	31.6		

6.5.2. <u>Calculations</u>

The results reported herein have been computed as per ASTM E831.

6.5.3. Graphical Representation of Results

Refer to Figure 6.1 to and Figure 6.4.

Figure 6.1 – Typical TMA graph for C10T specimens tested parallel to the fiber direction (00).

Figure 6.2– Typical TMA graph for C10T specimens tested perpendicular to the fiber direction (90).

Figure 6.3 – Typical TMA graph for C20T specimens tested parallel to the fiber direction (00).

Figure 6.4– Typical TMA graph for C20T specimens tested perpendicular to the fiber direction (90).

6.5.4. <u>Tabulated Results</u>

Table 6.3 contains the tabulated summary results for the products under evaluation, including: the average length of the specimen (L), the analysis start point (T_s), the analysis end point (T_e) and the coefficient of thermal expansion (α_m). Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 6.3 - Tabulated results for (Coef. of Th	nermal Exp	ansion	for CFI	U-10T	and CFU	-20T, per ASTM	E831
Specimen ID		L	7	s	7	T _e	α _m	
Specimento	mm	in	°C	°F	°C	°F	μ <i>m/(m</i> .°C)	µin/(in°F)
DOA_C10T_CTE_CC_00_001	10.700	0.4213	-30	-22	30	86	3.9	2.2
DOA_C10T_CTE_CC_00_002	10.863	0.4277	-30	-22	30	86	3.4	1.9
DOA_C10T_CTE_CC_00_003	11.084	0.4364	-30	-22	30	86	5.1	2.8
DOA_C10T_CTE_CC_00_004	10.710	0.4217	-30	-22	30	86	3.1	1.7
DOA_C10T_CTE_CC_00_005	10.856	0.4274	-30	-22	30	86	3.9	2.2
Average	10.843	0.4269					3.9	2.2
Sn-1	0.156	0.0061					0.8	0.4
CV((%)	1.4	1.4					19.7	19.3
DOA_C10T_CTE_CC_90_001	8.048	0.3169	-30	-22	50	122	57.6	32.0
DOA_C10T_CTE_CC_90_002	9.702	0.3820	-30	-22	50	122	57.2	31.8
DOA_C10T_CTE_CC_90_003	9.188	0.3617	-30	-22	50	122	57.6	32.0
DOA_C10T_CTE_CC_90_004	8.727	0.3436	-30	-22	50	122	60.8	33.8
DOA_C10T_CTE_CC_90_005	8.420	0.3315	-30	-22	50	122	59.2	32.9
Average	8.817	0.3471					58.5	32.5
Sn-1	0.648	0.0255					1.5	0.8
CV((%)	7.3	7.3					2.6	2.6
DOA_C20T_CTE_CC_00_001	10.810	0.4256	-30	-22	45	113	2.0	1.1
DOA_C20T_CTE_CC_00_002	10.858	0.4275	-30	-22	45	113	2.0	1.1
DOA_C20T_CTE_CC_00_003	9.038	0.3558	-30	-22	45	113	1.1	0.6
DOA_C20T_CTE_CC_00_004	10.229	0.4027	-30	-22	45	113	4.2	2.3
DOA_C20T_CTE_CC_00_005	12.256	0.4825	-30	-22	45	113	1.4	0.8
Average	10.638	0.4188					2.1	1.2
Sn-1	1.164	0.0458					1.2	0.7
CV((%)	10.9	10.9					56.8	56.0
DOA_C20T_CTE_CC_90_001	12.080	0.4756	-30	-22	50	122	56.1	31.2
DOA_C20T_CTE_CC_90_002	12.854	0.5061	-30	-22	50	122	56.4	31.3
DOA_C20T_CTE_CC_90_003	12.386	0.4876	-30	-22	50	122	57.3	31.8
DOA_C20T_CTE_CC_90_004	12.006	0.4727	-30	-22	50	122	57.3	31.9
DOA_C20T_CTE_CC_90_005	13.209	0.5200	-30	-22	50	122	57.0	31,7
Average	12.507	0.4924					56.8	31.6
Sn-1	0.515	0.0203					0.5	0.4
CV((%)	4.1	4.1					1.0	1.1

7. CREEP RUPTURE – ASTM D2990

7.1. TEST SUMMARY

7.1.1. <u>AC125 Section/s</u>

Section 5.8 for Physical and Mechanical Properties of FRP Composite Materials, Table 1, and Table 2.

7.1.2. <u>Reference Standard/s</u>

ASTM D2990–09, Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics.

7.1.3. <u>Test Objective</u>

Determine if the creep-rupture stresses of the FRP composite products under evaluation meet the AC125-Table 1 criteria more than 3,000 hours with a sustained load.

7.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric with Carbon Bond 300 HT resin (tested in the fiber direction: 0°)

7.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

7.1.6. Laboratory Technician/s

Keith Holmes and Francisco De Caso

7.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-D2990-DOA.

7.2. TEST MATRIX

7.2.1. <u>Specimen Number</u>

A total of five tests are reported. Refer to Table 7.1.

7.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified through the report using the format described in in Section 4.5 of this document.

Table 7.1 – Test Matrix for Creep Rupture									
	Eibor Lot	Deals Detal	Specimen						
Specimen ID		Resin Batch #	Preparation	Start Test	Finish Test				
	#	TT	(mm.dd.yy)	(mm.dd.yy)	(mm.dd.yy)				
DOA_C10T_CRP_CC_ 001 to 005	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852 B: Batch# D553G29000 and GMID#97000847	02.17.16	02.24.16	06.28.16				

7.3. SPECIMEN PREPARATION

7.3.1. Specimen Size

Nominal FRP specimen dimensions are summarized in Table 7.2, including FRP gauge length (C_M) , width (b_f) and nominal thickness (d_f) .

Table 7.2 – Creep Rupture Specimen Nominal Dimensions									
Specimen ID	C⊾	k) f	d _f					
Specimento	mm	in.	mm	in.	mm	in.			
DOA_C10T_CRP_CC	100.00	3.94	6.35	0.25	0.533	0.021			

7.3.2. <u>Specimen Layout</u>

The specimen layout is presented in Figure 7.1, while description and value of all parameters are reported in Table 7.3

Table 7.3 – Summary of Parameters for Creep Rupture Test								
Symbol	Parameter	Value						
Symbol	i arameter	mm	in					
dp	Thickness of the steel plate	6.00	0.24					
bp	Width of the steel plate	30.00	1.18					
dt	Height of the steel tube	50.00	1.97					
bt	Width of the steel tube	80.00	3.15					
w	Thickness of the steel tube	3.00	0.12					
df	Thickness of the FRP	0.533	0.021					
b _f	Average width of the FRP	19.38	0.763					
а	Moment arm	724.00	28.50					
I	Total length of FRP strip	800.00	31.50					
h	Total height of the fixture	56.00	2.20					
L	Span of creep fixture	1548.00	60.94					
Dv	Inner height of the steel tube	44.00	1.73					
См	FRP effective length (gauge)	100.00	3.94					

Figure 7.1 – Creep Rupture Specimen Layout	
Table 7.3 – Summary of Parameters for Creep Rupture Tes	st

7.3.3. Preparation Procedure

A FRP specimen strip was cut from a panel fabricated as described in Section 4.2.2. The creep rupture frame was composed of a top steel plate welded on the upper surface of the steel tubes to ensure rigid continuity between the elements. The FRP specimen was slid inside the tubes and centered in place. Inserts were used to hold the cured FRP laminate to center it in the steel tube while it was bonded to the inside of the steep tubes.

7.3.4. Conditioning Parameters

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C (73 $\pm 3^{\circ}$ F) and 60 $\pm 5^{\circ}$ relative humidity, for at least 24 hrs. prior to testing.

7.4. TEST SET-UP

7.4.1. Set-up

All specimens were tested in four point bending configuration (Figure 7.2). This ensures that no shear stress is present along the effective length of the FRP laminate (C_M in Table 7.3 and Figure 7.1). In addition, given the small nominal thickness of the FRP laminate, the stress on the FRP in the C_M portion were assumed constant and therefore treated as purely axial.

Figure 7.3 – Creep Rupture test set-up: underside of creep fixture preparation fo FRP installation (a); adhesion of FRP strip to underside of steel tube; test layout span and base plate for dead weight (c); and loading of creep fixture (d)

7.4.2. Rate and Method of Loading

Sustained tensile load of 601 lbf was manually applied by using dead weight for at least 3000 hrs. The applied load is such that the stress in the FRP is equal or greater than the requirements of AC125-Table 1 (equivalent to 0.55 of the average ultimate experimental tensile strength reported in Section 5). The actual level applied corresponded to 0.56 of the average ultimate experimental strength. Refer to Table 7.4.

Table 7.4 – Creep rupture load and applied stress level

Specimen ID	Average ex ultimate te	cperimental nsile stress	Sustai Tensile	ned FRP e Load, P	Corresponding Applied FRP Stress		
·	MPa	ksi	kN	lbs	MPa	ksi	
DOA_C10T_CRP_CC	1408	204.3	2.67	600.6	789	114.4	

7.5. TEST RESULTS

7.5.1. <u>Results Summary</u>

No creep rupture was reached by the CFU-10T FRP system under evaluation after more than 3000 hrs. of sustained load testing under a sustained stress equivalent to over 0.55 of the minimum requirement of the average ultimate experimental strength, hence the product meets the stress limits in FRP reinforced as per the requirements of AC125 Table 1.

7.5.2. <u>Modes of Failure</u>

No failure experienced.

7.5.3. <u>Calculations</u>

Equilibrium and compatibility equations were used to calculate the stress in the FRP as per section A-A, Figure 7.1. Note that compression stressed in the steel plate were also calculated in order to verify that no buckling would occur.

8. VOID CONTENT – ASTM D3171

8.1. TEST SUMMARY

8.1.1. <u>AC125 Section</u>

Section 5.8, Table 2 for physical and mechanical properties of FRP composite materials.

8.1.2. Reference Standard/s

ASTM D3171 -11, Standard Test Methods for Constituent Content of Composite Materials, Test Method I.

8.1.3. <u>Test Objective</u>

Calculate the reinforcement or matrix content by weight of the composite, cured ply thickness and void content.

8.1.4. <u>Product/s Under Evaluation</u>

CFU-10T and CFU-20T fabrics with Carbon Bond 300 HT resin.

8.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

8.1.6. Laboratory Technician/s

Tais Hamilton and Phil Lavonas

8.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-D3171(I)-DOA.

8.2. TEST MATRIX

8.2.1. <u>Specimen Number</u>

A total of five tests per product were under evaluation are reported, refer to Table 8.1.

8.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

8.2.3. <u>Test Matrix Table</u>

Table 8.1 – Test matrix for void content					
		Batch	Specimen	Tested	
Specimen ID	Fiber	Resin	Preparation		
	#	#	mm.dd.yy	mm.dd.yy	
DOA_C10T_VDC_CC_001 to 005	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852	05.06.16	05.24.16	
DOA_C20T_VDC_CC_001 to 005	Style# 1167/01/06	B: Batch# D553G29000 and GMID#97000847	07.28.16	08.12.16	

8.3. SPECIMEN PREPARATION

8.3.1. <u>Specimen Size</u>

Nominal specimen based on weight as reported in the results section.

8.3.2. <u>Preparation Procedure</u>

The specimens were cut to the prescribed dimensions using a high precision diamond blade saw from different panels randomly selected as prepared and referenced in Section 4.2.2.

8.3.3. <u>Specimen Conditioning</u>

All specimens were conditioned under laboratory ambient conditions at room temperature 23 ± 3 °C (73 ± 6 °F) and 50 ± 10 % relative humidity.

8.4. TEST SET-UP

8.4.1. <u>Set-up</u>

Specimens were weighed to the nearest 0.0001 g (2.2×10^{-7} lbs). A micrometer was used to determine the thickness of the laminate. The thickness was measured in three different locations. The density of each specimen was determined in accordance with ASTM D3171, test method I as defined in Table 8.3.

8.5. TEST RESULTS

8.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average matrix content (weight percent), ply thickness and void content based on ASTM D3171, test method I of the materials are summarized in Table 8.2, where the void volume was below the 6% requirement of AC125.

Table 8.2 – Average result for void content specimens				
	Matrix Content	Reinforcement Content	Void Volume	
Specimen ID	V _m	Vr	Vv	
	%	%	%	
DOA_C10T_VDC_CC	64.4	35.1	0.4	
DOA_C20T_VDC_CC	64.3	35.3	0.4	

8.5.2. <u>Calculations</u>

The results reported herein have been computed as per ASTM D3171 using the parameters defined in Table 8.3.

Table 8.3 - Definitions of calculations					
Symbol	Parameter	Description			
Mi	Initial mass of the specimen	Mass of the specimen			
Mf	Final mass of specimen	Mass of the specimen			
Vr	Reinforcement content	$V_r = (M_f / M_i) \times 100 \times \rho_c / \rho_r$			
Vm	Matrix content	$V_m = (M_i - M_f)/M_i \times \rho_c / \rho_m \times 100$			
Vv	Void volume	$V_{v} = 100 - (V_r + V_m)$			
ρ _c	Specimen density	Density			
ρr	Reinforcement density	Density			
ρm	Matrix density	Density			
Wm	Matrix content (weight Percent)	$W_m = (M_i - M_f)/M_i \times 100$			

8.5.3. Graphical Representation of Results

Not applicable.

8.5.4. <u>Tabulated Results</u>

Table 8.4 contains the tabulated summary results for the void content. Refer to the last two columns of each table where the matrix content (%) and thickness of the cured ply are reported. Average, standard deviation and coefficient of variance values are also reported.

Specimen ID	Area		Initial	Initial Mass		Final Mass		Reinforcement Content	Void Volume*
			141		1411		Vm	Vr	Vv
	mm²	in²	mg	oz	mg	oz	%	%	%
C10T_VOD_CC_001	536	0.83	496.0	0.0175	167.6	0.0059	65.7	33.8	0.5
C10T_VOD_CC_002	566	0.88	505.6	0.0178	177.5	0.0063	64.5	35.1	0.4
C10T_VOD_CC_003	553	0.86	489.2	0.0173	173.7	0.0061	64.1	35.5	0.4
C10T_VOD_CC_004	578	0.90	494.7	0.0175	181.1	0.0064	62.9	36.6	0.5
C10T_VOD_CC_005	606	0.94	547.8	0.0193	190.1	0.0067	64.9	34.7	0.4
Average	568	0.88	506.7	0.0179	178.0	0.0063	64.4	35.1	0.4
S _{n-1}	27	0.04	23.7	0.0008	8	0.0003	1.0	1.0	0.1
CV((%)	4.7	4.7	4.7	4.7	4.7	4.7	1.6	2.9	
C10T_VOD_CC_002	680	1.05	989.3	0.0349	352.2	0.0124	64.1	35.6	0.3
C10T_VOD_CC_003	604	0.94	1010.7	0.0357	361.8	0.0128	63.7	35.8	0.5
C10T_VOD_CC_003	610	0.95	1093.8	0.0386	397.0	0.0140	63.1	36.3	0.6
C10T_VOD_CC_004	627	0.97	982.9	0.0347	333.2	0.0118	65.8	33.9	0.3
C10T_VOD_CC_005	652	1.01	992.1	0.0350	344.3	0.0121	65.0	34.7	0.3
Average	635	0.98	1013.8	0.0358	357.7	0.0126	64.3	35.3	0.4
S _{n-1}	31	0.05	46	0.0016	24	0.0009	1.1	1.0	0.1
CV((%)	4.9	4.9	4.5	4.5	6.8	6.8	1.7	2.7	

*Condition of acceptance is equivalent to VV < 6%

9. GLASS TRANSITION TEMPERATURE – ASTM E1640

9.1. TEST SUMMARY

9.1.1. AC125 Section/s

Section 5.8 for Physical and Mechanical Properties of FRP Composite Materials, and Table 2.

9.1.2. <u>Reference Standard/s</u>

ASTM E1640 – 13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

9.1.3. <u>Test Objective</u>

Determine the glass transition temperature (T_g) of the saturating resin under evaluation based on dynamic mechanical analysis [DMA] (without any aging or environmental exposure).

9.1.4. <u>Product/s Under Evaluation</u>

Carbon Bond 300 HT resin.

9.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

9.1.6. Laboratory Technician/s

Andrea Correa, Phil Lavonas and Zahra Karim

9.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-E1640-DOA.

9.2. TEST MATRIX

9.2.1. Specimen Number

A total of 20 tests are reported, refer to Table 9.1.

9.2.2. Specimen ID Nomenclature

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

9.2.3. <u>Test Matrix Table</u>

Table 9.1 – Test matrix for T_g coupon specimens.					
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)	
DOA_CBHT_TG_CC_001 to 005	n/a	A: Batch#	02.17.16	06.25.16	
DOA_CBHT_TG_CC_006 to 010	n/a n/a	GMID# 97000852		06.22.16	
DOA_CBHT_TG_CC_011 to 015		B: Batch#		03.25.16	
DOA_CBHT_TG_CC_016 to 020	n/a	GMID#97000847		03.29.16	

9.3. SPECIMEN PREPARATION

9.3.1. <u>Specimen Size</u>

Nominal specimen dimensions were 20 mm (0.8 in.) span length, 5 mm (0.2 in.) width, and 1 mm (0.04 in.) thickness, as per ASTM E1640.

9.3.2. <u>Preparation Procedure</u>

Panels of resin were batched on silicon based molds at the desired thickness. The specimens were then cut to the prescribed dimensions using a high precision saw band.

9.3.3. <u>Conditioning Parameters</u>

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C (73 ± 3°F) and 60 ± 5% relative humidity, for at least 24 hrs. prior testing.

9.4. TEST SET-UP

9.4.1. <u>Set-up</u>

A Dynamic Mechanical Analyzer (DMA) was used with a flexural set up to apply a forced oscillation with constant amplitude at a fixed frequency. The tangent delta is obtained based on the tangent change with the increasing temperature by the analysis of the flexural mechanical response and plotted in a graph to determine the T_g . The test set-up is shown is Figure 9.1.

Figure 9.1 – Tg test set-up

9.4.2. Rate and Method of Loading

A heating rate of 1°C/min (1°F/min) and a frequency of 1 Hz was applied, with sub-ambient of liquid nitrogen and elevated nitrogen.

9.5. TEST RESULTS

9.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average glass transition temperature (T_g) of the materials under evaluation without any aging or exposure conditioning are summarized in Table 9.2. The T_g meets the conditions of acceptance of AC125 being higher than 60°C (140°F).

Table 9.2 – Average result for glass transition temperature					
Specimen ID	Tg				
Specimen ID	°C	° F			
DOA_CBHT_TG_CC	69.3	156.7			

9.5.2. <u>Calculations</u>

The T_g is determined by the extrapolated onset to the sigmoidal change and resultant peak of the Tan Delta value recorded during the transition from the hard, brittle region to the soft, rubbery region of the material under evaluation.

9.5.3. Graphical Representation of Results

Figure 9.2 show typical results for the determination of T_g.

9.5.4. <u>Tabulated Results</u>

Table 9.3 contains the tabulated summary results for the products under evaluation, including: glass transition temperature (T_g). Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Specimen ID	1	g^
Specimen ID	°C	° F
DOA_CBHT_TG_CC_001	72.5	162.5
DOA_CBHT_TG_CC_002	75.1	167.2
DOA_CBHT_TG_CC_003	75.9	168.7
DOA_CBHT_TG_CC_004	72.4	162.2
DOA_CBHT_TG_CC_005	72.8	163.0
DOA_CBHT_TG_CC_006	70.0	158.0
DOA_CBHT_TG_CC_007	71.1	160.0
DOA_CBHT_TG_CC_008	74.8	166.6
DOA_CBHT_TG_CC_009	71.9	161.4
DOA_CBHT_TG_CC_010	72.8	163.0
DOA_CBHT_TG_CC_011	63.9	147.0
DOA_CBHT_TG_CC_012	68.4	155.1
DOA_CBHT_TG_CC_013	62.1	143.8
DOA_CBHT_TG_CC_014	67.0	152.6
DOA_CBHT_TG_CC_015	65.8	150.4
DOA_CBHT_TG_CC_016	66.7	152.1
DOA_CBHT_TG_CC_017	64.4	147.9
DOA_CBHT_TG_CC_018	64.8	148.6
DOA_CBHT_TG_CC_019	64.9	148.8
DOA_CBHT_TG_CC_020	68.6	155.5
Average	69.3	156.7
S _{n-1}	4.2	7.5
CV((%)	6.0	4.8

Table 9.3 - Tabulated results for glass transition temperature for Carbon Bond 300 HT, per ASTM E1640

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C$ (140°F)

10. COMPOSITE INTERLAMINAR SHEAR STRENGTH – ASTM D2344

10.1. TEST SUMMARY

10.1.1. AC125 Section/s

Section 5.8, Table 2 for Physical and Mechanical Properties of FRP Composite Materials.

10.1.2. <u>Reference Standard/s</u>

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

10.1.3. <u>Test Objective</u>

Determine the short-beam interlaminar shear strength of the FRP systems under evaluation (without any aging or environmental exposure).

10.1.4. <u>Product/s Under Evaluation</u>

CFU-10T and CFU-20T fabric with Carbon Bond 300 HT resin.

10.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

10.1.6. Laboratory Technician/s

Tais Hamilton, Andrea Correa and Philip Lavonas

10.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-D2344-DOA.

10.2. TEST MATRIX

10.2.1. Specimen Number

A total of 20 tests per product under evaluation are reported, refer to Table 10.1.

10.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

10.2.3. <u>Test Matrix Table</u>

Table 10.1– Test matrix for interlaminar shear specimens (no aging).									
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)					
DOA_C10T_ISS_CC_001 to 020	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852	05.06.16	05.26.16					
DOA_C20T_ISS_CC_001 to 020	Style# 1167/01/06	B: Batch# D553G29000 and GMID#97000847		05.25.16					

10.3. SPECIMEN PREPARATION

10.3.1. <u>Specimen Size</u>

Average rectangular prism specimen dimensions are summarized in Table 10.4 including width (w) and thickness (t), based on 3 measurements. Specimens were composed of five plies of the FRP system.

10.3.2. <u>Preparation Procedure</u>

The specimens were cut to the prescribed dimensions using a high precision diamond blade saw from different panels randomly selected and prepared as referenced in Section 4.2.2.

10.3.3. <u>Conditioning Parameters</u>

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C (73 ± 3°F) and 60 ± 5% relative humidity, for at least 24 hrs prior testing.

10.4. TEST SET-UP

10.4.1. <u>Set-up</u>

The specimen was loaded in three-point bending. Testing was performed using a screw driven Instron Universal Test Frame. The load was measured with a 2225 kN (500 kip) load cell in compliance with ASTM E4-10 (Standard Practice for Force Verification of Testing Machines). The test set-up is shown is Figure 10.1. Load and crosshead displacement were recorded throughout the test using Instron's Bluehill software and data acquisition system.

10.4.2. Rate and Method of Loading

Load was applied in displacement control at a constant frame head displacement of 1.27 mm/min (0.05 in./min) as per ASTM D2344 requirements.

Figure 10.1 – Interlaminar shear test set-up

10.5. TEST RESULTS

10.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average short-beam strength (F^{sbs}) of the materials under evaluation without any aging or exposure conditioning was found to be as summarized in Table 10.2.

	F ^{sk}	os
Specimen ID	MPa	ksi
DOA_C10T_ISS_CC	45.26	6.56
DOA_C20T_ISS_CC	45.91	6.66

Table 10.2 – Average interlaminar shear strength results (ASTM D2344)

10.5.2. <u>Modes of Failure</u>

The primary mode of failure was by interlaminar shear of the test specimens, equivalent to FIG. 7.1 of ASTM D2344 and as seen in Figure 10.2.

Figure 10.2 – Representative failure mode showing interlaminar shear between plies

10.5.3. <u>Calculations</u>

The results reported herein have been computed per ASTM D2344 and summarized in the next section, where the parameters are defined in Table 10.3.

Symbol	Parameter	Description
Pm	Maximum force	Peak load recorded during test.
b	Measured width	Average specimen width based on three measurements.
h	Measured thickness	Average specimen thickness based on three measurements.
F ^{sbs}	Short-beam strength	$F^{sbs} = 0.75 P_m / (b \times h)$

10.5.4. <u>Tabulated Results</u>

Table 10.4 contains the tabulated summary for the products under evaluation, including: average measured width (b) and thickness (h) of each specimen; maximum tensile force (P^{max}); ultimate strength (F^{sbs}) as per ASTM D2344. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 10.4 - Tabulated results for	Table 10.4 - Tabulated results for interlaminar shear strength for CFU-10T, per ASTM D2344								
Specimen ID	1	Ь		h		Pm	F	F ^{3D3}	
-p	mm	in.	mm	in.	kN	lbf	MPa	ksi	
DOA_C10T_ISS_CC_001	5.89	0.23	4.38	0.17	1.66	373.1	48.21	6.99	
DOA_C10T_ISS_CC_002	6.24	0.25	4.86	0.19	1.82	409.3	45.02	6.53	
DOA_C10T_ISS_CC_003	5.94	0.23	4.78	0.19	1.76	394.7	46.40	6.73	
DOA_C10T_ISS_CC_004	6.44	0.25	4.62	0.18	1.80	405.5	45.45	6.59	
DOA_C10T_ISS_CC_005	5.73	0.23	4.41	0.17	1.57	353.5	46.73	6.78	
DOA_C10T_ISS_CC_006	6.29	0.25	4.69	0.18	1.73	388.1	43.95	6.37	
DOA_C10T_ISS_CC_007	5.59	0.22	4.38	0.17	1.48	332.2	45.27	6.57	
DOA_C10T_ISS_CC_008	6.52	0.26	4.15	0.16	1.63	366.1	45.14	6.55	
DOA_C10T_ISS_CC_009	5.27	0.21	4.62	0.18	1.43	320.3	43.86	6.36	
DOA_C10T_ISS_CC_010	6.67	0.26	4.83	0.19	1.89	423.7	43.93	6.37	
DOA_C10T_ISS_CC_011	6.10	0.24	4.45	0.18	1.62	363.8	44.79	6.50	
DOA_C10T_ISS_CC_012	6.57	0.26	4.19	0.17	1.63	366.0	44.37	6.43	
DOA_C10T_ISS_CC_013	6.24	0.25	4.72	0.19	1.77	397.9	45.05	6.53	
DOA_C10T_ISS_CC_014	5.82	0.23	4.46	0.18	1.56	350.1	45.05	6.53	
DOA_C10T_ISS_CC_015	5.28	0.21	4.47	0.18	1.47	330.7	46.71	6.77	
DOA_C10T_ISS_CC_016	5.31	0.21	3.92	0.15	1.23	276.0	44.20	6.41	
DOA_C10T_ISS_CC_017	6.01	0.24	4.33	0.17	1.56	350.9	44.99	6.53	
DOA_C10T_ISS_CC_018	5.18	0.20	4.41	0.17	1.42	318.5	46.53	6.75	
DOA_C10T_ISS_CC_019	4.95	0.20	4.24	0.17	1.23	277.5	44.07	6.39	
DOA_C10T_ISS_CC_020	5.12	0.20	4.60	0.18	1.43	320.9	45.49	6.60	
Average	5.86	0.23	4.48	0.18	1.58	355.9	45.26	6.56	
S _{n-1}	0.53	0.02	0.24	0.01	0.18	41.3	1.15	0.17	
CV((%)	9.1	9.1	5.4	5.4	11.6	11.6	2.5	2.5	

	b		h		Pm		F ^{sbs}	
Specimen ID	mm	in.	mm	in.	kN	lbf	MPa	ksi
DOA_C20T_ISS_CC_001	10.71	0.42	6.69	0.26	4.24	952.8	44.36	6.43
DOA_C20T_ISS_CC_002	10.68	0.42	6.68	0.26	4.29	964.0	45.07	6.54
DOA_C20T_ISS_CC_003	11.60	0.46	6.01	0.24	4.25	954.2	45.70	6.63
DOA_C20T_ISS_CC_004	11.34	0.45	5.26	0.21	3.54	796.3	44.55	6.46
DOA_C20T_ISS_CC_005	10.45	0.41	6.17	0.24	4.07	915.4	47.34	6.87
DOA_C20T_ISS_CC_006	10.50	0.41	6.64	0.26	4.29	964.3	46.12	6.69
DOA_C20T_ISS_CC_007	10.91	0.43	6.15	0.24	4.24	953.6	47.44	6.88
DOA_C20T_ISS_CC_008	10.72	0.42	6.49	0.26	4.43	994.5	47.70	6.92
DOA_C20T_ISS_CC_009	10.50	0.41	6.44	0.25	4.18	939.7	46.36	6.72
DOA_C20T_ISS_CC_010	10.62	0.42	6.73	0.27	4.50	1012.2	47.25	6.85
DOA_C20T_ISS_CC_011	11.75	0.46	6.05	0.24	4.32	971.0	45.62	6.62
DOA_C20T_ISS_CC_012	10.69	0.42	5.94	0.23	3.94	885.5	46.48	6.74
DOA_C20T_ISS_CC_013	10.82	0.43	6.18	0.24	3.96	889.9	44.36	6.43
DOA_C20T_ISS_CC_014	10.87	0.43	6.24	0.25	4.23	951.2	46.81	6.79
DOA_C20T_ISS_CC_015	10.06	0.40	6.55	0.26	4.03	906.0	45.86	6.65
DOA_C20T_ISS_CC_016	10.16	0.40	6.72	0.26	4.23	951.1	46.49	6.74
DOA_C20T_ISS_CC_017	11.05	0.44	5.94	0.23	4.04	908.5	46.15	6.69
DOA_C20T_ISS_CC_018	10.69	0.42	6.13	0.24	3.92	881.5	44.83	6.50
DOA_C20T_ISS_CC_019	10.87	0.43	6.20	0.24	4.02	904.0	44.76	6.49
DOA_C20T_ISS_CC_020	10.97	0.43	5.47	0.22	3.60	809.9	44.99	6.52
Average	10.80	0.43	6.23	0.25	4.12	925.3	45.91	6.66
S _{n-1}	0.42	0.02	0.40	0.02	0.24	54.9	1.07	0.16
CV((%)	3.8	3.8	6.5	6.5	5.9	5.9	2.3	2.3

Table 10.4 Continued - Tabulated results for interlaminar shear strength for and CFU-20T, per ASTM D2344.

11. BOND STRENGTH: TENSION – ASTM D7234

11.1. TEST SUMMARY

11.1.1. <u>AC125 Section/s</u>

Section 5.17, for bond strength.

11.1.2. <u>Reference Standard/s</u>

ASTM D7234 – 12, Standard Test Method for Pull-Off Adhesion Strength of Coatings on Concrete Using Portable Pull-Off Adhesion Testers.

11.1.3. <u>Test Objective</u>

Determine the tensile bond strength on concrete substrate of the FRP systems under evaluation without any aging or exposure conditioning.

11.1.4. <u>Product/s Under Evaluation</u>

CFU-10T and CFU-20T fabrics with Carbon Bond 300 HT resin.

11.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

11.1.6. Laboratory Technician/s

Christian Marquina

11.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-D7234-DOA.

11.2. TEST MATRIX

11.2.1. <u>Specimen Number</u>

A total of five tests per product under evaluation are reported, refer to Table 11.1.

11.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

11.2.3. Test Matrix Table

Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)					
DOA_C10T_BTC_CC_001 to 005	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852	02.17.16	03.04.16					
DOA_C20T_BTC_CC_001 to 005	Style# 1167/01/06	B: Batch# D553G29000 and GMID#97000847	05.06.16	05.18.16					

Table 11 1 Test matrix for tancian band strength tests (no aging)

11.3. SPECIMEN PREPARATION

11.3.1. Specimen Size

The FRP systems were applied on solid plain concrete blocks with nominal dimensions of 355 mm (14.0 in.) length, 100 mm (4.0 in.) width, and 100 mm (4.0 in.) thickness. The concrete surface was strengthened with one ply of each FRP system under evaluation.

11.3.2. Specimen Layout

The specimen layout is presented in Figure 11.1. The concrete substrate 28 day compressive strength as determined by ASTM C39/C39M-14 (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens), was equivalent to 57.86 MPa (8392 psi) based on three compressive cylinder tests as reported in Table 11.2. All concrete specimens were cast simultaneously in one single batch on January 19, 2016 following ASTM C192/C192M-13a, Practice for Making and Curing Concrete Test Specimens in the Laboratory.

Figure 11.1 - Tension bond specimen layout (ASTM D7234)

Specimen	Diam	eter	Area		P	Pmax		с	Failure
ID	mm	in	mm²	in²	kN	lbf	MPa	psi	Mode
C1	102.11	4.02	8188.6	12.69	463.9	104280	56.65	8216	Type 4
C2	102.10	4.02	8187.3	12.69	474.0	106560	57.90	8397	Type 4
C3	101.96	4.01	8165.5	12.66	482.1	108370	59.04	8562	Type 2
Average	102.06	4.02	8180.5	12.68	473.3	106403	57.86	8392	
S _{n-1}	0.08	0.00	12.9	0.02	9.1	2049	1.19	173	
CV((%)	0.1	0.1	0.2	0.2	1.9	1.9	2.1	2.1	

Table 11.2 – Concrete compressive strength results (ASTM C39) for substrate used in testing

11.3.3. <u>Preparation Procedure</u>

The FRP layer was applied to the concrete surface as referenced in Section 0. After the curing process a circular cut perpendicular to the surface using a diamond coring drill to score the surface of the FRP layer as indicated in ASTM D7234 FIG 2. The test specimen was left intact, attached to the substrate. Any standing water was removed; the surface was cleaned from any debris from the drilling operation and was allowed to dry. A steel disk was then attached to the top FRP surface using adhesive epoxy. The disk was centered with the test specimen and the axis of the disk was placed parallel to the axis of the test specimen. The epoxy adhesive was cured following the manufacturer's instructions prior testing.

11.3.4. <u>Conditioning Parameters</u>

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C ($73 \pm 3^{\circ}$ F) and $60 \pm 5\%$ relative humidity, for at least 24 hrs prior testing.

11.4. TEST SET-UP

11.4.1. <u>Set-up</u>

The tensile load device was connected to the steel disk using a coupling device. The tensile load was then applied to the test specimen so that the force was parallel to, and coincident with, the axis of the specimen. The load was measured with a pressure dial gauge. The test set-up is shown is Figure 11.2.

Figure 11.2 – Tension bond strength test set-up

11.4.2. Rate and Method of Loading

The tensile load was applied manually at a constant rate so that the tensile stress increased at a rate of 35 ± 15 kPa/s (5 ± 2 psi/s).

11.5. TEST RESULTS

11.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average tensile strength was found to be above the minimum AC125 requirement of 1378 kPa (200 psi) as summarized in Table 11.3.

Table 11.3 – Average tensile strength for tension bond specimens							
Specimen ID	Average Bond Tensile Strength						
Specimentin	MPa	psi					
DOA_C10T_BTC_CC	4.92	713					
DOA_C20T_BTC_CC	4.66	675					

11.5.2. <u>Modes of Failure</u>

The mode of failure was in the substrate (Type A) equivalent to FIG. 1 of ASTM D7234. Figure 12.3 shows a typical failure of the specimen.

Figure 11.3 - Typical failure of performed tension bond strength test.

11.5.3. Calculations

The results reported herein have been computed as per ASTM D7234. Definitions of the parameters used for calculation is provided in Table 11.4.

Symbol	Parameter	Description
А	Area of test specimen	Area of circular cut
Τı	Tensile load	Tensile load applied with the load device
Ts	Tensile Strength	Tensile strength when the failure occurs in the substrate

Table 11.4 - Definitions of calculations

11.5.4. <u>Tabulated Results</u>

Table 11.5 contains the tabulated summary for the products under evaluation, including: area of the test specimen (A), tensile load (T_i), tensile strength (T_S), and failure mode as per ASTM D7234. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

	Time	Α		Τı		Ts	*	
Specimen ID	sec	mm²	in²	Ν	lbf	МРа	psi	Failure Mode
DOA_C10T_BTC_CC_001	142	2026	3.14	10013	2250	4.94	717	A
DOA_C10T_BTC_CC_002	126	2026	3.14	9790	2200	4.83	701	А
DOA_C10T_BTC_CC_003	130	2026	3.14	10013	2250	4.94	717	А
DOA_C10T_BTC_CC_004	135	2026	3.14	10680	2400	5.27	764	А
DOA_C10T_BTC_CC_005	126	2026	3.14	9345	2100	4.61	669	А
Average	132	2026	3.14	9968	2240	4.92	713	
S _{n-1}	7	0	0.00	482	108	0.24	35	
CV((%)	5.2	0.0	0.0	4.8	4.8	4.8	4.8	
DOA_C20T_BTC_CC_001	137	2026	3.14	8678	1950	4.28	621	А
DOA_C20T_BTC_CC_002	129	2026	3.14	9568	2150	4.72	685	А
DOA_C20T_BTC_CC_003	144	2026	3.14	9790	2200	4.83	701	А
DOA_C20T_BTC_CC_004	150	2026	3.14	9345	2100	4.61	669	А
DOA_C20T_BTC_CC_005	137	2026	3.14	9790	2200	4.83	701	А
Average	139	2026	3.14	9434	2120	4.66	675	
S _{n-1}	8	0	0.00	461	104	0.23	33	
CV((%))	57	0.0	0.0	49	49	49	49	

*Condition of acceptance is equivalent to $\tau_s > 200psi$

12. BOND STRENGTH: SHEAR – LAB METHOD

12.1. TEST SUMMARY

12.1.1. <u>AC125 Section/s</u>

Section 5.17, for bond strength.

12.1.2. <u>Reference Standard/s</u>

An internal laboratory developed standard test procedure was used for the shear bond strength test derived from a test method currently under evaluation by ACI and an ASTM (Standard Test Method for Evaluation of Performance for FRP Bonded to Concrete Substrate using Beam Test).

12.1.3. <u>Test Objective</u>

Determine the shear bond strength on concrete substrate of the FRP systems under evaluation without any aging or exposure conditioning.

12.1.4. <u>Product/s Under Evaluation</u>

CFU-10T and CFU-20T fabrics with Carbon Bond 300 HT resin.

12.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

12.1.6. <u>Laboratory Technician/s</u>

Tais Hamilton

12.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-BTC-DOA.

12.2. TEST MATRIX

12.2.1. <u>Specimen Number</u>

A total of five tests per product under evaluation are reported, refer to Table 12.1.

12.2.2. Specimen ID Nomenclature

Specimens are identified through the report using the format described in Section 4.5 of this document.

12.2.3. <u>Test Matrix Table</u>

Table 12.1– Test matrix for shear bond test specimens (no aging).									
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)					
DOA_C10T_BSC_CC_001 to 005	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852	02.17.16	03.01.16					
DOA_C20T_BSC_CC_001 to 005	Style# 1167/01/06	B: Batch# D553G29000 and GMID#97000847	05.06.16	05.16.16					

12.3. SPECIMEN PREPARATION

12.3.1. Specimen Size

The FRP systems were applied on concrete beams of nominal dimension equivalent to 350 mm (14.0 in.) length, with a square cross-section of 100 mm (4.0 in.). The concrete beams were notched with a slot at the center using a high precision diamond blade saw. The notch depth was equal to half the height of the block or 50 mm (2.0 in).

12.3.2. Specimen Layout

Shear bond specimen layout is presented in Figure 12.1, the span of the notched beam was equivalent to 304.8 mm (12.0 in.). All concrete specimens were cast simultaneously in one single batch on January 19, 2016, where the 28 day compressive strength of the concrete was equivalent to 57.86 MPa (8392 psi), as detailed in Section 11.3.2.

12.3.3. <u>Preparation Procedure</u>

The FRP one ply strip installed on the concrete beams had a nominal dimension of 228 mm (9.0 in.) length by 25 mm (1.0 in.) wide, placed at the center of the flexural (lower side) of the concrete beam bridging the notch. The FRP strip was saturate and installed on the concrete surface as described in Section 0. The nominal thickness used in computing the shear bond strength was 0.533 mm (0.021 in.) and 0.914 mm (0.036 in.) for the C10T and C20T fiber sheets, respectively.

12.3.4. <u>Conditioning Parameters</u>

All specimens were conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C (73 $\pm 3^{\circ}$ F) and 60 $\pm 5^{\circ}$ relative humidity, for at least 24 hrs. prior testing.

12.4. TEST SET-UP

12.4.1. <u>Set-up</u>

The specimen was loaded in three point bending as per the lab method. Testing was performed using a screw driven Instron Universal Test Frame with a maximum capacity of 130 kN (30 kip). The load was measured with the internal load cell of the frame in compliance with ASTM E4. The test set-up is shown in Figure 12.2. Load and crosshead displacement were recorded throughout the test using Instron's Bluehill software and data acquisition system.

Figure 12.2 - Shear bond test set-up

12.4.2. Rate and Method of Loading

Load was applied in displacement control at a constant frame head displacement of 0.5 mm/min (0.02 in./min).

12.5. TEST RESULTS

12.5.1. <u>Results Summary</u>

Based on the experimental tests presented herein the average shear bond strength was found to be above the minimum AC125 requirement of 1378 kPa (200 psi) as summarized in Table 12.2.

Table 12.2 – Average tensile strength for shear bond specimens									
Specimon ID	Average shear bond strength								
Specimen iD	MPa	psi							
DOA_C10T_BSC_CC	2.90	420							
DOA_C20T_BSC_CC	3.02	438							

12.5.2. <u>Modes of Failure</u>

Figure 12.3 shows possible failure modes of a shear bond test as per the ASTM under development as well as the primary mode of failure mode observed. The primary mode of failure was FRP debonding (delamination) by peeling off from the substrate (*failure type a*). Individual failure modes are reported in the tabulated results section of this document.

(b)

Figure 12.3 - Failure modes types for shear bond test (a), and representative shear bond failure mode (b)

12.5.3. <u>Calculations</u>

The results reported herein have been computed as per Shear Bond Lab Method. Definitions of the parameters and equations used to compute the shear bond strength are provided in

Table 12.3 and Table 11.4, respectively.

	I able	12.3 - Definitions of parameters
Symbol	Parameter	Description
W	bonded width of FRP	shear bonded width of FRP
S	bonded length of FRP	shear bonded length of FRP
Р	maximum applied force	maximum applied force indicated by testing machine
Td	bond strength of FRP	bond strength of FRP composite material to concrete
Fd	force in FRP	force in FRP required to detach FRP from concrete substrate,
K*	FRP tensile stiffness	FRP tensile stiffness per unit width
Ec	modulus of elasticity	modulus of elasticity of concrete
b	Width	width of concrete test beam
d	Depth	overall depth of concrete test beam

Equations		Description					
$F_d = \left(\frac{P}{2}\right) \left(\frac{1.5}{1 - \alpha/3}\right)$	(1)	Force in FRP for pull-out					
$\alpha = -\beta + \sqrt{\beta^2 + 2\beta} \le 0.5$	(2)	Ratio of neutral axis depth					
$eta = rac{K^*w}{E_cbd}$	(3)	Ratio of axial stiffness					
$T_d = \frac{F_d}{(w \times S)/2}$	(4)	Shear bond strength of FRP					

12.5.4. Tabulated Results

Table 12.5 contains the tabulated summary results for the products under evaluation, including: bonded width of FRP (w); bonded length (S); maximum applied force (P); bonded strength of FRP (T_d), and failure mode as per Shear Bond Lab Method. Average, standard deviation (Sn-1), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Specimen ID	W	1	S		F)	T,	d	Failure Mode	Pass/Fail*
Specimen iD	mm	in	mm	in	kN	lbf	MPa	psi		
DOA_C10T_BSC_CC_001	25.40	1.00	228.60	9.00	10.06	2260	2.67	387	FRP debonding	Pass
DOA_C10T_BSC_CC_002	25.40	1.00	228.60	9.00	10.81	2430	2.87	416	FRP debonding	Pass
DOA_C10T_BSC_CC_003	25.40	1.00	228.60	9.00	10.90	2450	2.90	420	FRP debonding	Pass
DOA_C10T_BSC_CC_004	25.40	1.00	228.60	9.00	11.79	2650	3.13	454	FRP debonding	Pass
DOA_C10T_BSC_CC_005	25.40	1.00	228.60	9.00	10.99	2470	2.92	423	FRP debonding	Pass
Average	25.40	1.00	228.60	9.00	10.91	2452	2.90	420		
S _{n-1}					0.62	139	0.16	24		
CV((%)					5.7	5.7	5.7	5.7		
DOA_C20T_BSC_CC_001	25.40	1.00	228.60	9.00	10.53	2367	2.80	406	FRP debonding	Pass
DOA_C20T_BSC_CC_002	25.40	1.00	228.60	9.00	12.05	2708	3.23	468	FRP debonding	Pass
DOA_C20T_BSC_CC_003	25.40	1.00	228.60	9.00	11.65	2617	3.12	452	FRP debonding	Pass
DOA_C20T_BSC_CC_004	25.40	1.00	228.60	9.00	10.85	2438	2.90	421	FRP debonding	Pass
DOA_C20T_BSC_CC_005	25.40	1.00	228.60	9.00	11.41	2563	3.05	443	FRP debonding	Pass
Average	25.40	1.00	228.60	9.00	11.30	2539	3.02	438		
S _{n-1}					0.61	137	0.17	25		
CV((%)					5.4	5.4	5.6	5.6		

*Condition of acceptance is equivalent to $\tau_d > 200psi$

13. FREEZING AND THAWING

13.1. TEST SUMMARY

13.1.1. <u>AC125 Section/s</u>

Section 5.10, Table 2 for physical and mechanical properties of FRP composite materials.

13.1.2. <u>Reference Standard/s</u>

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

Shear Bond Lab method

13.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, and interlaminar shear strength after exposure to freeze thaw cycles as per AC125 Section 5.10.

13.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric with Carbon Bond 300 HT resin.

13.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

13.1.6. <u>Laboratory Technician/s</u>

Philip Lavonas and Christian Marquina

13.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-FT.

13.2. TEST MATRIX

13.2.1. <u>Specimen Number</u>

Five test repetitions for each test type (ASTM D3039, ASTM D2344, ASTM E1640 and Shear bond strength lab method) for the FRP system under evaluation were performed. A total of 5 repetitions per test type are reported, refer to Table 13.1.

13.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

13.2.3. Test Matrix Table

Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)
DOA_C10T_TNS_FT_001 to 005		A: Batch#	02.01.16	04.07.16
DOA_C10T_ISS_FT_001 to 005	Style#	GMID# 97000852	05.06.16	06.15.16
DOA_CBHT_TG_FT_001 to 005	1286/01/00	B: Batch# D553G29000 and	02.17.16	04.14.16
DOA_C10T_BSC_FT_001 to 005		GMID#97000847		04.11.16

Table 13.1 – Test matrix for tensile tests post freezing and thawing conditioning.

13.3. SPECIMEN PREPARATION

13.3.1. Specimen Size and Preparation Procedure

Nominal specimen geometry and preparation procedure varied for each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength. Individual specimen geometry parameters are reported the results section of this Chapter.

13.3.2. <u>Conditioning Parameters</u>

All specimens were exposed to 20 cycles, where each cycle consisted of a minimum of 4 hours in a freeze-thaw chamber at -18° C (0°F) followed by a minimum of 12 hours in a humidity chamber at 38°C (100°F) with 100% relative humidity. Prior to the 20 cycles the samples were conditioned in 100% relative humidity chamber at 38°C (100°F) for a period of three weeks (504 hrs.).

13.4. TEST SET-UP

13.4.1. <u>Set-up</u>

Upon completion of conditioning, specimens were removed from conditioning chamber, wiped to dry the surface, and visually inspected prior testing. Refer to applicable test set-ups in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

13.4.2. <u>Rate and Method of Loading</u>

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

13.5. TEST RESULTS

13.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90 percent retention of the tensile properties, and of 1.38 MPa (200 psi) for shear bond strength. Detailed test results are reported in the tabulated results of this Chapter.

13.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after freezing and thawing cycles conditioning are reported in the tabulated results of this Chapter.

13.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

13.5.4. <u>Tabulated Results</u>

Table 13.2 through Table 13.5 contain the tabulated summary results after freezing and thawing cycles conditioning for the tensile, interlaminar shear strength, glass transition temperature and shear bond strength tests, respectively. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

	Α		P	P ^{max}		F ^{tu}		Echord		FM	%	Retenti	on*
Specimen ID	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%		\mathbf{F}^{tu}	Echord	٤u
DOA_C10T_TNS_FT_001	13.56	0.021	18.60	4180	1371.0	198.85	91.25	13.24	1.50	SGM	97	101	96
DOA_C10T_TNS_FT_002	13.71	0.021	19.04	4279	1388.2	201.35	88.84	12.89	1.56	SGM	99	98	100
DOA_C10T_TNS_FT_003	13.67	0.021	19.66	4419	1437.9	208.55	96.28	13.97	1.49	SGM	102	106	96
DOA_C10T_TNS_FT_004	13.85	0.021	17.72	3982	1279.2	185.54	92.14	13.37	1.39	LGM	91	102	89
DOA_C10T_TNS_FT_005	13.48	0.021	20.06	4508	1487.5	215.75	90.21	13.09	1.65	SGM	106	100	106
Average	13.65	0.021	19.02	4274	1392.8	202.01	91.74	13.31	1.52		99	101	98
S _{n-1}	0.14	0.000	0.92	206	78.1	11.33	2.82	0.41	0.10				
CV((%)	1.0	1.0	4.8	4.8	5.6	5.6	3.1	3.1	6.3				

Table 13.2 - Tabulated results for tensile tests for CFU-10T (ASTM D3039) post freezing and thawing conditioning (AC125, Section 5.10.1)

*Condition of acceptance is equivalent to 90% retention.

Table 13.3 - Tabulated results for interlaminar shear tests for CFU-10T (ASTM D2344) post freezing and thawing conditioning (AC125, Section 5.10.1)

Specimen ID		b		h	Р	m	F ^{sbs}		Failure Mode	% Retention*
Specimento	mm	in	mm	in	kN	lbf	MPa	ksi		F ^{sbs}
DOA_C10T_ISS_FT_001	6.40	0.252	4.50	0.177	1.82	408	47.30	6.86	Interlaminar shear	105
DOA_C10T_ISS_FT_002	6.01	0.237	4.33	0.171	1.74	391	50.14	7.27	Interlaminar shear	111
DOA_C10T_ISS_FT_003	5.78	0.228	4.31	0.170	1.64	369	49.48	7.18	Interlaminar shear	110
DOA_C10T_ISS_FT_004	6.44	0.254	4.33	0.171	1.70	382	45.70	6.63	Interlaminar shear	101
DOA_C10T_ISS_FT_005	4.95	0.195	4.24	0.167	1.47	331	52.56	7.62	Interlaminar shear	116
Average	5.92	0.233	4.34	0.171	1.67	376	49.04	7.11		109
S _{n-1}	0.60	0.024	0.09	0.004	0.13	29	2.64	0.38		
CV((%)	10.2	10.2	2.2	2.2	7.7	7.7	5.4	5.4		

*Condition of acceptance is equivalent to 90% retention.

Specimen ID	1	g	Acceptance
Specifien ID	°C	° F	Criteria*
DOA_CBHT_TG_FT_001	66.3	151.3	Pass
DOA_CBHT_TG_FT_002	66.5	151.7	Pass
DOA_CBHT_TG_FT_003	68.7	155.7	Pass
DOA_CBHT_TG_FT_004	67.1	152.8	Pass
DOA_CBHT_TG_FT_005	67.2	153.0	Pass
Average	67.2	152.9	
S _{n-1}	0.9	1.7	
CV((%)	1.4	1.1	

Table 13.4 - Tabulated results for glass transition temperature for Carbon Bond 300 HT (ASTM E1640) post freezing and thawing conditioning (AC125, Section 5.10.1)

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

Table 13.5 - Tabulated results for shear bond strength for CFU-10T (Lab Method) tests
post freezing and thawing conditioning (AC125, Section 5.10.1)

Specimen ID	w		S	S		Р		d	Failure Mode	Pass/Fail*
Specimento	mm	in	mm	in	kN	lbf	MPa	psi		Td
DOA_C10T_BSC_FT_001	25.40	1.00	228.60	9.00	10.36	2328	2.75	399	FRP debonding	Pass
DOA_C10T_BSC_FT_002	25.40	1.00	228.60	9.00	10.50	2359	2.79	404	FRP debonding	Pass
DOA_C10T_BSC_FT_003	25.40	1.00	228.60	9.00	9.84	2211	2.61	379	FRP debonding	Pass
DOA_C10T_BSC_FT_004	25.40	1.00	228.60	9.00	10.00	2248	2.65	385	FRP debonding	Pass
DOA_C10T_BSC_FT_005	25.40	1.00	228.60	9.00	9.25	2079	2.45	356	FRP debonding	Pass
Average	25.40	1.00	228.60	9.00	9.99	2245	2.65	385		
S _{n-1}					0.49	110	0.13	19		
CV((%)					4.9	4.9	4.9	4.9		

*Condition of acceptance is equivalent to $\tau_d > 200 \text{psi}$

14. AGING: WATER RESISTANCE – ASTM D2247

14.1. TEST SUMMARY

14.1.1. <u>AC125 Section/s</u>

Section 5.11, Table 3 for Aging and environmental durability tests.

Section 5.8, Table 2 for physical and mechanical properties of FRP composite materials.

14.1.2. <u>Reference Standard/s</u>

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

Shear Bond Lab method

14.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, interlaminar shear strength, after ageing exposure to water resistant (warm and humid) environment.

14.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin

14.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

14.1.6. Laboratory Technician/s

Zahra Karim, Tais Hamilton, Andrea Correa and Philip Lavonas

14.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-WR.

14.2. TEST MATRIX

14.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions for each environment cycle duration (1000, 3000, and 10000 hours) and physical/mechanical test designation (ASTM D3039, ASTM D2344, ASTM E1640 and shear bond strength lab method) were performed. A total of 15 tests per test type are reported, refer to Table 14.1.

14.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

14.2.3. <u>Test Matrix Table</u>

	FRF	Batch ID	Agi	ing	Tostod
Specimen ID	Fiber	Resin	Start	Finish	Testeu
	#	#	mm.dd.yy	mm.dd.yy	mm.dd.yy
DOA_C10T_TNS_WR_01_001 to 005				03.20.16	03.29.16
DOA_C10T_TNS_WR_03_001 to 005			02.08.16	06.12.16	06.17.16
DOA_C10T_TNS_WR_10_001 to 005		and nd		03.20.17	PENDING*
DOA_C10T_ISS_WR_01_001 to 005		818 22 17		06.13.16	06.17.16
DOA_C10T_ISS_WR_03_001 to 005	8	085 085 084 084	05.17.16	09.05.16	09.12.16
DOA_C10T_ISS_WR_10_001 to 005	le# 01/0	363 362 362		06.23.17	PENDING*
DOA_CBHT_TG_WR_01_001 to 005	Sty 86/)555)# 9)555 D#9		03.20.16	03.30.16
DOA_CBHT_TG_WR_03_001 to 005	12	H# [] MID MID MID MI		06.12.16	06.21.16
DOA_CBHT_TG_WR_10_001 to 005		Batc 00	02 22 16	03.30.17	PENDING
DOA_C10T_BSC_WR_01_001 to 005		A: B: -	02.22.10	03.20.16	04.01.16
DOA_C10T_BSC_WR_03_001 to 005				06.12.16	06.22.16
DOA_C10T_BSC_WR_10_001 to 005				03.30.17	PENDING

*Visual inspection only, no test required.

14.3. SPECIMEN PREPARATION

14.3.1. Specimen Size and Preparation Procedure

Nominal specimen geometry, layout and preparation procedure varied for each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength. Individual specimen geometry parameters are reported the results section of this Chapter.

14.3.2. <u>Conditioning Parameters</u>

All specimens were conditioned and aged in an environmental test chamber under a water resistance environment at a temperature of $38 \pm 2^{\circ}$ C ($100 \pm 4^{\circ}$ F) and 100% relative humidity, for three different duration periods of 1000, 3000, and 10000 hours prior testing. The temperature of the chamber was monitored continuously. FRP panels where placed at an approximate angle of 15° from the vertical, while the shear bond strength concrete beams specimens were positioned vertically, following requirements of as per ASTM D2247. All specimens were arranged so that condensation from one specimen did not drip on other specimens and so that condensation appeared evenly on the specimens at all times. The environmental chamber and random specimens were visually checked approximately every 200 hours for quality purposes.

14.4. TEST SET-UP

14.4.1. <u>Set-up</u>

Upon completion of aging exposure, specimens were removed from the heated environmental test chamber and wiped to dry the surface. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior physical and mechanical testing, a recovery period long enough so that the specimens reached moisture equilibrium with laboratory testing conditions was established (minimum 72 hours). Following the recovery period, specimens were

tested. Refer to applicable test set-ups in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

14.4.2. <u>Rate and Method of Loading</u>

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

14.5. TEST RESULTS

14.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90% or 85% percent retention for the 1000 and 3000 hrs. exposure, respectively, corresponding to the tensile and interlaminar shear strength properties, and of 1.38 MPa (200 psi) for shear bond strength. For the 10,000 hrs. exposure, only visual inspection of the conditioned specimens is required. Testing for 10,000 hrs. is on ongoing.

14.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after water resistance conditioning are reported in tabulated results of this Chapter.

14.5.3. Calculations

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

14.5.4. Tabulated Results

Table 14.2 through Table 14.5 contain the tabulated summary results after water resistance conditioning for the tensile, interlaminar shear strength, glass transition temperature and shear bond strength tests, respectively. Refer to the last column of each table where it states the strength retention of the physical mechanical property under evaluation. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 14.2 - Tabulated	results	for tensi	le tests i	for CFU	-10T (AS	TM D303	89) post	water re	sistanc	e conditio	oning (ASTN	1 D22	47)	
Specimen ID		4	P	ıax	F	tu	Ecl	nord	٤u	Failure	Exposure	%	Retentio	n*
Specimento	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%	Mode	hrs.	F ^{tu}	Echord	εu
DOA_C10T_TNS_WR_01_001	14.40	0.022	19.43	4367	1348.9	195.6	95.03	13.79	1.42	SGM		96	105	91
DOA_C10T_TNS_WR_01_002	12.75	0.020	16.45	3696	1289.4	187.0	84.93	12.32	1.52	LGB		92	94	97
DOA_C10T_TNS_WR_01_003	13.20	0.020	17.83	4007	1350.7	195.9	92.78	13.46	1.46	SGM	1000	96	103	93
DOA_C10T_TNS_WR_01_004	13.07	0.020	17.16	3857	1312.3	190.3	89.53	12.99	1.47	SGM		93	99	94
DOA_C10T_TNS_WR_01_005	12.94	0.020	16.85	3786	1301.7	188.8	86.75	12.59	1.50	LGT		92	96	96
Average	13.27	0.021	17.54	3943	1320.6	191.5	89.80	13.03	1.47			94	99	94
S _{n-1}	0.65	0.001	1.17	263	27.9	4.0	4.16	0.60	0.04					
CV((%)	4.9	4.9	6.7	6.7	2.1	2.1	4.6	4.6	2.6					
DOA_C10T_TNS_WR_03_001	13.74	0.021	17.67	3970	1285.4	186.4	87.73	12.73	1.46	SGM		91	97	94
DOA_C10T_TNS_WR_03_002	13.81	0.021	18.33	4119	1327.1	192.5	91.61	13.29	1.45	SGM		94	101	93
DOA_C10T_TNS_WR_03_003	13.39	0.021	19.28	4334	1440.1	208.9	83.32	12.09	1.73	SGM	3000	102	92	111
DOA_C10T_TNS_WR_03_004	14.10	0.022	19.13	4298	1355.5	196.6	83.41	12.10	1.62	MGM		96	92	104
DOA_C10T_TNS_WR_03_005	14.92	0.023	18.83	4231	1261.6	183.0	80.98	11.75	1.56	SGM		90	90	100
Average	13.99	0.022	18.65	4190	1333.9	193.5	85.41	12.39	1.56			95	94	100
S _{n-1}	0.58	0.001	0.66	148	69.6	10.1	4.24	0.61	0.12					
CV((%)	4.1	4.1	3.5	3.5	5.2	5.2	5.0	5.0	7.4					

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

S_{n-1}

CV((%)

0.21

3.9

3.9

Specimon ID	b)	I	h	Р	m	F	bs	Failure Mode	Exposure	% Retention*
Specimen id	mm	in	mm	in	kN	lbf	MPa	ksi		hrs.	F ^{sbs}
DOA_C10T_ISS_WR_01_001	9.99	0.39	4.90	0.19	2.91	655	44.58	6.47	Interlaminar Shear		99
DOA_C10T_ISS_WR_01_002	10.29	0.41	5.00	0.20	3.20	720	46.68	6.77	Interlaminar Shear		103
DOA_C10T_ISS_WR_01_003	10.06	0.40	5.23	0.21	3.25	730	46.28	6.71	Interlaminar Shear	1000	102
DOA_C10T_ISS_WR_01_004	9.78	0.39	4.99	0.20	3.12	701	47.92	6.95	Interlaminar Shear		106
DOA_C10T_ISS_WR_01_005	10.07	0.40	5.18	0.20	3.03	682	43.60	6.32	Interlaminar Shear		96
Average	10.04	0.40	5.06	0.20	3.10	698	45.81	6.64			101
S _{n-1}	0.18	0.01	0.14	0.01	0.13	30	1.72	0.25			
CV((%)	1.8	1.8	2.7	2.7	4.3	4.3	3.8	3.8			
DOA_C10T_ISS_WR_03_001	5.55	0.22	4.64	0.18	1.44	323	41.90	6.08	Interlaminar Shear		93
DOA_C10T_ISS_WR_03_002	5.74	0.23	4.76	0.19	1.47	330	40.29	5.84	Interlaminar Shear		89
DOA_C10T_ISS_WR_03_003	5.60	0.22	4.50	0.18	1.42	318	42.16	6.11	Interlaminar Shear	3000	93
DOA_C10T_ISS_WR_03_004	5.41	0.21	4.72	0.19	1.47	331	43.24	6.27	Interlaminar Shear		96
DOA_C10T_ISS_WR_03_005	5.18	0.20	4.80	0.19	1.33	299	40.05	5.81	Interlaminar Shear		88
Average	5.50	0.22	4.68	0.18	1.43	320	41.53	6.02			92

Table 14.3 - Tabulated results for interlaminar shear tests for CEU-10T	(ASTM D2344) post water resistance conditioning (ASTM D2247)
	(AOTIN D2044) post water resistance conditioning (AOTIN D2247)

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

2.6

0.01 0.12 0.00 0.06

2.6

4.1

13

4.1

1.34

3.2

0.19

3.2

Specimen ID	Т	g	Exposure	Acceptance
Speciment	°C	°F	Hrs.	Criteria*
DOA_CBHT_TG_WR_01_001	67.8	154.0		Pass
DOA_CBHT_TG_WR_01_002	66.2	151.2		Pass
DOA_CBHT_TG_WR_01_003	70.3	158.6	1000	Pass
DOA_CBHT_TG_WR_01_004	61.8	143.3		Pass
DOA_CBHT_TG_WR_01_005	70.3	158.6		Pass
Average	67.3	153.1		
S _{n-1}	3.5	6.4		
CV((%)	5.2	4.1		
DOA_CBHT_TG_WR_03_001	74.1	165.4		Pass
DOA_CBHT_TG_WR_03_002	78.5	173.3		Pass
DOA_CBHT_TG_WR_03_003	71.9	161.4	3000	Pass
DOA_CBHT_TG_WR_03_004	70.3	158.5		Pass
DOA_CBHT_TG_WR_03_005	73.8	164.8		Pass
Average	73.7	164.7		
S _{n-1}	3.1	5.5		
CV((%)	4.2	3.4		

Table 14.4 - Tabulated results for glass transition temperature for Carbon Bond 300 HT	(ASTM E [·]	1640)
post water resistance conditioning (ASTM D2247)		

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

Spacimon ID	w	1	Š		F		Т	d	Failure Mode	Exposure	Acceptance
Specimento	mm	in	mm	in	kN	lbf	MPa	psi		hrs.	criteria*
DOA_C10T_BSC_WR_01_001	25.40	1.00	228.60	9.00	10.56	2374	2.81	407	FRP debonding		Pass
DOA_C10T_BSC_WR_01_002	25.40	1.00	228.60	9.00	10.95	2461	2.91	422	FRP debonding		Pass
DOA_C10T_BSC_WR_01_003	25.40	1.00	228.60	9.00	9.11	2047	2.42	351	FRP debonding	1000	Pass
DOA_C10T_BSC_WR_01_004	25.40	1.00	228.60	9.00	9.43	2118	2.50	363	FRP debonding		Pass
DOA_C10T_BSC_WR_01_005	25.40	1.00	228.60	9.00	10.71	2407	2.85	413	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	10.15	2281	2.70	391			
S _{n-1}					0.83	186	0.22	32			
CV((%)					8.1	8.1	8.2	8.2			
DOA_C10T_BSC_WR_03_001	25.40	1.00	228.60	9.00	8.36	1879	2.22	322	FRP debonding		Pass
DOA_C10T_BSC_WR_03_002	25.40	1.00	228.60	9.00	10.83	2433	2.88	417	FRP debonding		Pass
DOA_C10T_BSC_WR_03_003	25.40	1.00	228.60	9.00	8.55	1922	2.27	329	FRP debonding	3000	Pass
DOA_C10T_BSC_WR_03_004	25.40	1.00	228.60	9.00	9.19	2066	2.44	354	FRP debonding		Pass
DOA_C10T_BSC_WR_03_005	25.40	1.00	228.60	9.00	9.68	2175	2.57	373	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	9.32	2095	2.48	359			
S _{n-1}					0.99	223	0.26	38			
CV((%)					10.6	10.6	10.7	10.7			

Table 14.5 - Tabulated results for shear bond strength for CFU-10T (Lab Method) post water resistance conditioning (ASTM D2247)

*Condition of acceptance is equivalent to $T_d > 200 \text{ psi}$

15. AGING: SALT WATER RESISTANCE – ASTM D1141

15.1. TEST SUMMARY

15.1.1. AC125 Section/s

Section 5.11, Table 3 for Aging and environmental durability tests.

Section 5.8, Table 2 for physical and mechanical properties of FRP composite materials.

15.1.2. <u>Reference Standard/s</u>

ASTM D1141 -98, Standard practice for the preparation of Substitute Ocean Water

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

Shear Bond Lab method

15.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, interlaminar shear strength, after ageing exposure to salt water environment.

15.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin.

15.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

15.1.6. <u>Laboratory Technician/s</u>

Zahra Karim, Tais Hamilton, Andrea Correa and Philip Lavonas

15.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-SW.

15.2. TEST MATRIX

15.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions for each environment cycle duration (1000, 3000, and 10000 hours) and physical/mechanical test designation (ASTM D3039, ASTM D2344, ASTM E1640 and shear bond strength lab method) were performed. A total of 15 tests per test type are reported, refer to Table 15.1.

15.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

15.2.3. <u>Test Matrix Table</u>

Table 15.1 – Test matrix f	for tensile	tests post salt	water resista	nce aging	
	FRF	P Batch ID	Ag	ing	Tested
Specimen ID	Fiber	Resin	Start	Finish	Testeu
	#	#	mm.dd.yy	mm.dd.yy	mm.dd.yy
DOA_C10T_TNS_SW_01_001 to 005				03.20.16	03.28.16
DOA_C10T_TNS_SW_03_001 to 005			02.08.16	06.12.16	06.20.16
DOA_C10T_TNS_SW_10_001 to 005		and nd		03.20.17	PENDING*
DOA_C10T_ISS_SW_01_001 to 005	-	818 20 a		06.13.16	06.17.16
DOA_C10T_ISS_SW_03_001 to 005	8	085 082 082 082	05.17.16	09.05.16	09.12.16
DOA_C10T_ISS_SW_10_001 to 005	le# 01/C	363 363 700		06.23.17	PENDING*
DOA_CBHT_TG_SW_01_001 to 005	Sty 86/)555)# 9)555 D#6		03.20.16	03.28.16
DOA_CBHT_TG_SW_03_001 to 005	10	h# I MID MID MIM		06.12.16	06.16.16
DOA_CBHT_TG_SW_10_001 to 005		Batc 00	02 22 16	03.30.17	PENDING
DOA_C10T_BSC_SW_01_001 to 005	-	A: B B: -	02.22.10	03.20.16	04.01.16
DOA_C10T_BSC_SW_03_001 to 005				06.12.16	06.22.16
DOA_C10T_BSC_SW_10_001 to 005				03.30.17	PENDING

*Visual inspection only, no test required.

15.3. SPECIMEN PREPARATION

15.3.1. Specimen Size and Preparation Procedure

Nominal specimen geometry, layout and preparation procedure varied for each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength. Individual specimen geometry parameters are reported the results section of this Chapter..

15.3.2. <u>Conditioning Parameters</u>

All specimens were conditioned to be aged in a submerged salt water tank chamber at a temperature of $23 \pm 2^{\circ}$ C ($73 \pm 2^{\circ}$ F), for three different duration periods of 1000, 3000, and 10000 hours prior testing. The temperature of the chamber was monitored continuously. Salt water was prepared using inorganic salts in proportions and concentrations representative of ocean water, as per ASTM D1141. A circulation pump was active to ensure the solution maintained original composition, and replacement was added as necessary. The chamber and random specimens were visually checked approximately every 200 hours for quality purposes.

15.4. TEST SET-UP

15.4.1. <u>Set-up</u>

Upon completion of aging exposure, specimens were removed from the environmental test chamber and wiped to dry the surface. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior to physical and mechanical testing, a recovery period long enough so that the specimens reached moisture equilibrium with laboratory testing conditions was established (minimum 72 hours). Following the recovery period, specimens were tested. Refer to applicable test set-ups in in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

15.4.2. Rate and Method of Loading

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

15.5. TEST RESULTS

15.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90% or 85% percent retention for the 1000 and 3000 hrs. exposure, respectively, corresponding to the tensile and interlaminar shear strength properties and of 1.38 MPa (200 psi) for shear bond strength. For the 10,000 hrs. exposure, only visual inspection of the conditioned specimens is required. Testing for 10,000 hrs. is on ongoing.

15.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after salt water resistance conditioning are reported in the tabulated results of this Chapter.

15.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

15.5.4. <u>Tabulated Results</u>

Table 15.2 through Table 15.5 contain the tabulated summary results after salt water resistance conditioning for the tensile, interlaminar shear strength, glass transition temperature and shear bond strength tests, respectively. Refer to the last column of each table where it states the percentage retention of the physical mechanical property under evaluation. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

CV((%) 3.1

Table 15.2 - Tabulated re	sults for	tensile	tests for	CFU-1	01, (AST	M D3039) post sa	It water	resista	ince cond	litioning (AS	IMD	1141)	4
Specimen ID	4	4	P	lax	F	u	Ecr	iora	εu	Failure	Exposure	%	Retentio	n*
opconnen ib	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%	Mode	hrs.	F ^{tu}	Echord	٤u
DOA_C10T_TNS_SW_01_001	13.07	0.020	17.40	3909	1330.1	192.9	89.59	13.00	1.48	SGM		94	99	95
DOA_C10T_TNS_SW_01_002	13.63	0.021	18.52	4162	1358.2	197.0	88.01	12.77	1.54	SGM		96	97	99
DOA_C10T_TNS_SW_01_003	13.21	0.020	18.80	4224	1422.4	206.3	81.25	11.79	1.75	SGM	1000	101	90	112
DOA_C10T_TNS_SW_01_004	13.56	0.021	17.14	3852	1263.5	183.2	83.18	12.07	1.52	SGM		90	92	98
DOA_C10T_TNS_SW_01_005	13.64	0.021	18.94	4257	1387.9	201.3	89.18	12.94	1.56	SGM		99	99	100
Average	13.42	0.021	18.16	4081	1352.4	196.2	86.24	12.51	1.57			96	95	101
S _{n-1}	0.26	0.000	0.83	187	60.4	8.8	3.78	0.55	0.10					
CV((%)	2.0	2.0	4.6	4.6	4.5	4.5	4.4	4.4	6.6					
DOA_C10T_TNS_SW_03_001	13.48	0.021	17.64	3963	1307.7	189.7	95.12	13.80	1.37	SGM		93	105	88
DOA_C10T_TNS_SW_03_002	13.95	0.022	18.08	4062	1294.9	187.8	82.56	11.98	1.57	SGM		92	91	101
DOA_C10T_TNS_SW_03_003	14.58	0.023	17.71	3981	1214.6	176.2	88.09	12.78	1.38	SGM	3000	86	97	89
DOA_C10T_TNS_SW_03_004	13.98	0.022	19.82	4454	1417.1	205.5	86.49	12.55	1.64	MGV		101	96	105
DOA_C10T_TNS_SW_03_005	14.43	0.022	17.54	3942	1215.2	176.3	76.43	11.09	1.59	SGM		86	85	102
Average	14.08	0.022	18.16	4080	1289.9	187.1	85.74	12.44	1.51			92	95	97
S _{n-1}	0.43	0.001	0.95	214	83.3	12.1	6.91	1.00	0.12					

	Table 15.2 -	Tabulated results for te	ensile tests for CFU-107	. (ASTM D3039) pos	st salt water resistance	conditioning (ASTM D1141)
--	--------------	--------------------------	--------------------------	--------------------	--------------------------	---------------------------

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

5.2

3.1

5.2

6.5

6.5

8.1

8.2

8.1

		post	salt wa	ater res	istance	e condi	tioning (A	ASTM	D1141)	,	
Specimen ID	Ł)	I	h	P	m	F	bs	Failure Mode	Exposure	% Retention*
	mm	in	mm	in	kN	lbf	MPa	ksi		hrs.	F ^{sbs}
DOA_C10T_ISS_SW_01_001	11.19	0.44	4.98	0.20	3.45	775	46.42	6.73	Interlaminar Shear		103
DOA_C10T_ISS_SW_01_002	11.34	0.45	4.91	0.19	3.53	792	47.42	6.88	Interlaminar Shear		105
DOA_C10T_ISS_SW_01_003	10.11	0.40	4.86	0.19	3.00	675	45.79	6.64	Interlaminar Shear	1000	103
DOA_C10T_ISS_SW_01_004	10.25	0.40	4.78	0.19	2.92	655	44.68	6.48	Interlaminar Shear		101
DOA_C10T_ISS_SW_01_005	10.11	0.40	4.65	0.18	2.81	632	44.88	6.51	Interlaminar Shear		101
Average	10.60	0.42	4.84	0.19	3.14	706	45.84	6.65			102
S _{n-1}	0.61	0.02	0.13	0.01	0.32	73	1.13	0.16			
CV((%)	5.8	5.8	2.7	2.7	10.3	10.3	2.5	2.5			
DOA_C10T_ISS_SW_03_001	6.05	0.24	4.93	0.19	1.67	376	42.12	6.11	Interlaminar Shear		93
DOA_C10T_ISS_SW_03_002	5.68	0.22	5.02	0.20	1.57	352	41.26	5.98	Interlaminar Shear		91
DOA_C10T_ISS_SW_03_003	5.69	0.22	4.89	0.19	1.59	358	42.90	6.22	Interlaminar Shear	3000	95
DOA_C10T_ISS_SW_03_004	5.92	0.23	5.00	0.20	1.65	372	41.87	6.07	Interlaminar Shear		93
DOA_C10T_ISS_SW_03_005	5.89	0.23	5.03	0.20	1.75	393	44.23	6.41	Interlaminar Shear		98
Average	5.36	0.21	4.98	0.20	1.48	333	41.66	6.04			92
S _{n-1}	5.76	0.23	4.97	0.20	1.62	364	42.34	6.14			
CV((%)	0.24	0.01	0.05	0.00	0.09	21	1.07	0.16			

Table 15.3 - Tabulated rec	ulte for interlamina	· chaar tacte for		$(\Lambda QTM D22/A)$
	uits ior internaritinai	311001 10313 101	$C_{1} O^{-1} O^{1}$	(AOTWD2044)

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.
Specimen ID °C °F Criter DOA_CBHT_TG_SW_01_001 60.3 140.6 Pas DOA_CBHT_TG_SW_01_002 61.2 142.2 Pas DOA_CBHT_TG_SW_01_003 65.7 150.3 Pas DOA_CBHT_TG_SW_01_004 59.9 139.8 Pas DOA_CBHT_TG_SW_01_005 64.5 148.1 Pas DOA_CBHT_TG_SW_01_005 64.5 144.2 Pas CV((%) 4.2 3.3 S	ria* 55 55 55 55 55 55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 85 85 85 85 85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 85 85 85
DOA_CBHT_TG_SW_01_003 65.7 150.3 Pas DOA_CBHT_TG_SW_01_004 59.9 139.8 Pas DOA_CBHT_TG_SW_01_005 64.5 148.1 Pas DOA_CBHT_TG_SW_01_005 64.5 148.1 Pas Comparison Comparison 62.3 144.2 Comparison Sn-1 2.6 4.7 CV((%) 4.2 3.3 CV((%) 4.2 3.3 CV((%) 4.2 3.3 CV((%) 4.2 S.3 CV CV	85 85 85
DOA_CBHT_TG_SW_01_004 59.9 139.8 Pas DOA_CBHT_TG_SW_01_005 64.5 148.1 Pas Average 62.3 144.2 Sn-1 2.6 4.7 CV((%) 4.2 3.3 Sn-1 2.6 3.3	65 65
DOA_CBHT_TG_SW_01_005 64.5 148.1 Pas Average 62.3 144.2 S _{n-1} 2.6 4.7 CV((%) 4.2 3.3	SS
Average 62.3 144.2 S _{n-1} 2.6 4.7 CV((%) 4.2 3.3	
S_{n-1} 2.6 4.7 CV((%) 4.2 3.3	
<i>CV((%)</i> 4.2 3.3	
DOA_CBHT_TG_SW_03_001 60.9 141.6 Pas	SS
DOA_CBHT_TG_SW_03_002 67.1 152.8 Pas	SS
DOA_CBHT_TG_SW_03_003 65.5 149.9 Pas	SS
DOA_CBHT_TG_SW_03_004 62.8 145.0 Pas	SS
DOA_CBHT_TG_SW_03_005 61.7 143.1 Pas	ss
Average 63.6 146.5	
S _{n-1} 2.6 4.7	

Table 15.4 - Tabulated results for glass transition temperature for Carbon Bond 300 HT (AST	VI E1640)
post salt water resistance conditioning (ASTM D1141)	

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

Table 15.5	- Tabul	ated re	sults for s	hear b	ond str	ength te	ests for	CFU-1	0T, (Lab Method)		
	р	ost salt	water res	sistanc	e condi	itioning	(ASTM	D114 ⁻	1)		
Specimen ID	W	1	S			Р	т	d	Failure Mode	Exposure	Pass/Fail
Specimento	mm	in	mm	in	kN	lbf		psi		hrs.	
DOA_C10T_BSC_SW_01_001	25.40	1.00	228.60	9.00	9.11	2047	2.42	351	FRP debonding		Pass
DOA_C10T_BSC_SW_01_002	25.40	1.00	228.60	9.00	8.62	1937	2.29	332	FRP debonding		Pass
DOA_C10T_BSC_SW_01_003	25.40	1.00	228.60	9.00	9.97	2240	2.65	384	FRP debonding	1000	Pass
DOA_C10T_BSC_SW_01_004	25.40	1.00	228.60	9.00	8.41	1891	2.23	324	FRP debonding		Pass
DOA_C10T_BSC_SW_01_005	25.40	1.00	228.60	9.00	9.18	2064	2.44	354	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	9.06	2036	2.41	349			
S _{n-1}					0.60	135	0.16	23			
CV((%)					6.7	6.7	6.7	6.7			
DOA_C10T_BSC_SW_03_001	25.40	1.00	228.60	9.00	8.10	1821	2.15	312	FRP debonding		Pass
DOA_C10T_BSC_SW_03_002	25.40	1.00	228.60	9.00	6.39	1436	1.70	246	FRP debonding		Pass
DOA_C10T_BSC_SW_03_003	25.40	1.00	228.60	9.00	8.00	1798	2.12	308	FRP debonding	3000	Pass
DOA_C10T_BSC_SW_03_004	25.40	1.00	228.60	9.00	8.71	1958	2.32	336	FRP debonding		Pass
DOA C10T BSC SW 03 005	25.40	1.00	228.60	9.00	8.29	1864	2.20	319	FRP debonding		Pass

7.90

0.89

1775

199

11.2 11.2 11.3 11.3

2.10

0.24

304

34

Table 15.5 - Tabulated results for shear bond strength tests for CFU-10T, (I	Lab Method)
post colt water registered conditioning (ACTM D1111)	

*Condition of acceptance is equivalent to $\tau_d > 200psi$

Average **S**n-1

CV((%)

25.40 1.00 228.60 9.00

16. AGING: ALKALI RESISTANCE– ASTM C581

16.1. TEST SUMMARY

16.1.1. <u>AC125 Section/s</u>

Section 5.11, Table 3 for Aging and environmental durability tests.

Section 5.8, Table 2 for physical and mechanical properties of FRP composite materials.

16.1.2. <u>Reference Standard/s</u>

ASTM C581 -03 (Reapproved 2008), Standard practice for determining chemical resistance of thermosetting resins used in glass-fiber-reinforced structures intended for liquid service

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

Shear Bond Lab method

16.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, interlaminar shear strength, after ageing exposure to an alkaline water environment.

16.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin.

16.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

16.1.6. <u>Laboratory Technician/s</u>

Zahra Karim, Tais Hamilton, Andrea Correa and Philip Lavonas

16.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-AR.

16.2. TEST MATRIX

16.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions for each environment cycle duration (1000, and 3000 hours) and physical/mechanical test designation (ASTM D3039, ASTM D2344, ASTM E1640 and shear bond strength lab method) were performed. A total of 10 tests per test type are reported, refer to Table 16.1.

16.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

16.2.3. <u>Test Matrix Table</u>

Table 16.1 – Test matrix fo	or tensile t	tests post alkali	resistance c	onditioning	
	FR	P Batch ID	Ag	ing	Tostad
Specimen ID	Fiber	Resin	Start	Finish	Testeu
	#	#	mm.dd.yy	mm.dd.yy	mm.dd.yy
DOA_C10T_TNS_AR_01_001 to 005			02.08.16	03.20.16	03.28.16
DOA_C10T_TNS_AR_03_001 to 005		208 2000 3000	02.00.10	06.12.16	06.20.16
DOA_C10T_ISS_AR_01_001 to 005	0	G30 085 000 000	05 17 16	06.13.16	06.17.16
DOA_C10T_ISS_AR_03_001 to 005	1e# 01/C	5530 700 #97	03.17.10	09.05.16	09.12.16
DOA_CBHT_TG_AR_01_001 to 005	Sty 86/			03.20.16	04.05.16
DOA_CBHT_TG_AR_03_001 to 005	12	atch MID oGl	02 22 16	06.12.16	06.20.16
DOA_C10T_BSC_AR_01_001 to 005		B B B B B B B B B B B B B B B B B B B	02.22.10	03.20.16	04.01.16
DOA_C10T_BSC_AR_03_001 to 005		A HW		06.12.16	06.22.16

16.3. SPECIMEN PREPARATION

16.3.1. <u>Specimen Size and Preparation Procedure</u>

Nominal specimen geometry, layout and preparation procedure varied for each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength. Individual specimen geometry parameters are reported the results section of this Chapter.

16.3.2. <u>Conditioning Parameters</u>

All specimens were conditioned by submersion in an alkali solution $Ca(CO_3)$ environmental chamber at a constant temperature of $23 \pm 2^{\circ}C$ ($73 \pm 2^{\circ}F$) for two different duration periods of 1000 and 3000 hours prior testing. The test solution was replaced with fresh solution as often as necessary to maintain original composition and concentration equivalent to 9.5 pH. The specimens and chamber were visually checked approximately every 200 hours for quality purposes.

16.4. TEST SET-UP

16.4.1. <u>Set-up</u>

Upon termination of aging exposure, specimens were removed from the environmental test chamber and wiped to dry the surface. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior to physical and mechanical testing, a recovery period long enough so that the specimens reached moisture equilibrium with laboratory testing conditions was established (minimum 72 hours). Following the recovery period, specimens were tested. Refer to applicable test set-ups in in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

16.4.2. Rate and Method of Loading

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

16.5. TEST RESULTS

16.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90% or 85% percent retention for the 1000 and 3000 hrs. exposure, respectively, corresponding to the tensile and interlaminar shear strength properties, and of 1.38 MPa (200 psi) for shear bond strength. Detailed test results are reported in Section 16.5.4.

16.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after alkali resistance conditioning are reported in the tabulated results of this Chapter.

16.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

16.5.4. <u>Tabulated Results</u>

Table 16.2 through Table 16.5 contain the tabulated summary results after alkali resistance conditioning for the tensile, interlaminar shear strength, glass transition temperature and shear bond strength tests, respectively. Refer to the last column of each table where it states the percentage retention of the physical mechanical property under evaluation. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Average 14.20

CV((%)

S_{n-1} 0.41

2.9

Table 16.2 - Tabulat	ed resu	Its for te	ensile te	sts for	CFU-107	(ASTN	1 D3039) post a	alkali re	esistance condi	tioning (AS1	M C5	81)	
Specimen ID		4	P	lax	F	и	Ecl	nord	ευ	Failure Mode	Exposure	%	Retentio	on*
	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%		hrs.	F ^{tu}	E ^{chord}	ευ
DOA_C10T_TNS_AR_01_001	13.90	0.022	19.02	4274	1367.7	198.4	81.46	11.82	1.68	SGM		97	90	108
DOA_C10T_TNS_AR_01_002	13.93	0.022	19.70	4427	1413.9	205.1	91.25	13.24	1.55	LGT		100	101	99
DOA_C10T_TNS_AR_01_003	13.81	0.021	17.51	3935	1267.9	183.9	86.70	12.58	1.46	SGM	1000	90	96	94
DOA_C10T_TNS_AR_01_004	13.71	0.021	18.27	4105	1331.7	193.1	86.84	12.60	1.53	LGB		95	96	98
DOA_C10T_TNS_AR_01_005	13.85	0.021	19.41	4362	1401.2	203.2	90.08	13.07	1.55	LGB		99	100	100
Average	13.84	0.021	18.78	4221	1356.5	196.7	87.26	12.66	1.56			96	97	100
S _{n-1}	0.09	0.000	0.89	200	58.9	8.5	3.81	0.55	0.08					
CV((%)	0.6	0.6	4.7	4.7	4.3	4.3	4.4	4.4	5.0					
DOA_C10T_TNS_AR_03_001	14.51	0.022	17.42	3914	1199.8	174.0	87.37	12.68	1.37	SGM		85	97	88
DOA_C10T_TNS_AR_03_002	14.16	0.022	19.71	4429	1391.6	201.8	80.15	11.63	1.74	SGM		99	89	111
DOA_C10T_TNS_AR_03_003	14.67	0.023	17.59	3952	1198.1	173.8	79.32	11.51	1.51	SGM	3000	85	88	97
DOA_C10T_TNS_AR_03_004	13.66	0.021	18.12	4071	1326.1	192.3	83.94	12.18	1.58	SGM		94	93	101
DOA_C10T_TNS_AR_03_005	13.98	0.022	17.10	3842	1222.2	177.3	90.08	13.07	1.36	SGM		87	100	87

183.8

12.6

6.9

84.17

4.60

5.5

12.21

0.67

5.5

1.51

0.16

10.4

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

4042

232

5.7

1267.6

87.0

6.9

0.022 17.99

1.03

5.7

0.001

2.9

90

93

97

Specimen ID	k)		h	P	m	F	bs	Failure Mode	Exposure	% Retention*
	mm	in	mm	in	kN	lbf	MPa	ksi		hrs.	F ^{sbs}
DOA_C10T_ISS_AR_01_001	10.53	0.41	5.19	0.20	3.42	769	46.93	6.81	Interlaminar Shear		104
DOA_C10T_ISS_AR_01_002	11.29	0.44	5.00	0.20	3.45	776	45.83	6.65	Interlaminar Shear		101
DOA_C10T_ISS_AR_01_003	12.03	0.47	5.19	0.20	3.79	852	45.48	6.60	Interlaminar Shear	1000	100
DOA_C10T_ISS_AR_01_004	10.33	0.41	5.16	0.20	3.32	745	46.69	6.77	Interlaminar Shear		105
DOA_C10T_ISS_AR_01_005	10.49	0.41	4.41	0.17	2.76	620	44.74	6.49	Interlaminar Shear		101
Average	10.93	0.43	4.99	0.20	3.35	752	45.93	6.66			102
S _{n-1}	0.72	0.03	0.34	0.01	0.37	84	0.90	0.13			
CV((%)	6.6	6.6	6.7	6.7	11.2	11.2	2.0	2.0			
DOA_C10T_ISS_AR_03_001	5.33	0.21	4.74	0.19	1.41	317	41.81	6.06	Interlaminar Shear		92
DOA_C10T_ISS_AR_03_002	5.42	0.21	4.79	0.19	1.48	333	42.79	6.21	Interlaminar Shear		95
DOA_C10T_ISS_AR_03_003	5.32	0.21	4.91	0.19	1.44	323	41.16	5.97	Interlaminar Shear	3000	91
DOA_C10T_ISS_AR_03_004	5.33	0.21	4.71	0.19	1.37	309	40.97	5.94	Interlaminar Shear		91
DOA_C10T_ISS_AR_03_005	5.44	0.21	4.86	0.19	1.45	326	41.12	5.96	Interlaminar Shear		91
Average	5.37	0.21	4.80	0.19	1.43	321	41.57	6.03			92
S _{n-1}	0.05	0.00	0.09	0.00	0.04	9	0.75	0.11			
CV((%)	1.0	1.0	1.8	1.8	2.9	2.9	1.8	1.8			

Table 16.3 - Tabulated results for interlaminar shear tests for CFU-10T (ASTM D2344) post alkali resistance conditioning (ASTM C581)

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

Specimen ID	7	Гg	Acceptance
Specimento	°C	° F	Criteria*
DOA_CBHT_TG_AR_01_001	65.8	150.4	Pass
DOA_CBHT_TG_AR_01_002	63.9	147.0	Pass
DOA_CBHT_TG_AR_01_003	60.3	140.5	Pass
DOA_CBHT_TG_AR_01_004	61.6	142.9	Pass
DOA_CBHT_TG_AR_01_005	65.3	149.5	Pass
Average	63.4	146.1	
S _{n-1}	2.4	4.3	
CV((%)	3.7	2.9	
DOA_CBHT_TG_AR_03_001	61.8	143.2	Pass
DOA_CBHT_TG_AR_03_002	60.0	140.0	Pass
DOA_CBHT_TG_AR_03_003	65.4	149.7	Pass
DOA_CBHT_TG_AR_03_004	61.7	143.1	Pass
DOA_CBHT_TG_AR_03_005	60.2	140.4	Pass
Average	61.8	143.3	
Seit	2.2	3.9	
U 1-1			

Table 16.4 - Tabulated results for glass transition temperature for Carbon Bond 300 HT (ASTM E1640) post alkali resistance conditioning (ASTM C581)

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

Specimen ID	w	I	Š		F)	Ţ	d	Failure Mode	Exposure	Pass/Fail*
Specimen iD	mm	in	mm	in	kN	lbf		psi		hrs.	
DOA_C10T_BSC_AR_01_001	25.40	1.00	228.60	9.00	9.01	2024	2.39	347	FRP debonding		Pass
DOA_C10T_BSC_AR_01_002	25.40	1.00	228.60	9.00	8.93	2006	2.37	344	FRP debonding		Pass
DOA_C10T_BSC_AR_01_003	25.40	1.00	228.60	9.00	9.95	2235	2.64	383	FRP debonding	1000	Pass
DOA_C10T_BSC_AR_01_004	25.40	1.00	228.60	9.00	9.38	2108	2.49	361	FRP debonding		Pass
DOA_C10T_BSC_AR_01_005	25.40	1.00	228.60	9.00	10.49	2358	2.79	404	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	9.55	2146	2.54	368			
S _{n-1}					0.66	149	0.18	25			
CV((%)					6.9	6.9	6.9	6.9			
DOA_C10T_BSC_AR_03_001	25.40	1.00	228.60	9.00	5.81	1306	1.54	224	FRP debonding		Pass
DOA_C10T_BSC_AR_03_002	25.40	1.00	228.60	9.00	7.89	1773	2.10	304	FRP debonding		Pass
DOA_C10T_BSC_AR_03_003	25.40	1.00	228.60	9.00	9.36	2103	2.48	360	FRP debonding	3000	Pass
DOA_C10T_BSC_AR_03_004	25.40	1.00	228.60	9.00	9.41	2114	2.50	362	FRP debonding		Pass
DOA_C10T_BSC_AR_03_005	25.40	1.00	228.60	9.00	8.81	1980	2.34	339	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	8.26	1855	2.19	318			
S _{n-1}					1.50	336	0.40	57			
CV((%)					18.1	18.1	18.1	18.1			

Table 16.5 - Tabulated results for shear bond strength tests for CFU-10T (Lab Method) post alkali resistance conditioning (ASTM C581)

*Condition of acceptance is equivalent to $\tau_d > 200 psi$

17. AGING: DRY HEAT RESISTANCE- ASTM D3045

17.1. TEST SUMMARY

17.1.1. <u>AC125 Section/s</u>

Section 5.11, Table 3 for Aging and environmental durability tests.

Section 5.8, Table 2 for physical and mechanical properties of FRP composite materials.

17.1.2. Reference Standard/s

ASTM D3045 -92 (Reapproved 2010), Standard practice for heat aging of plastics without load

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

Shear Bond Lab method

17.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, and interlaminar shear strength, after ageing exposure to a dry heat environment.

17.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin.

17.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

17.1.6. <u>Laboratory Technician/s</u>

Zahra Karim, Tais Hamilton, Andrea Correa and Philip Lavonas

17.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-DH.

17.2. TEST MATRIX

17.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions for each environment cycle duration (1000, and 3000) and physical/mechanical test designation (ASTM D3039, ASTM D2344, ASTM E1640 and shear bond strength lab method) were performed. A total of 10 tests per test type are reported, refer to Table 17.1.

.....

RECORD Document Number: R-5.10_DOA_13-12-11.2 Test Report

17.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

. . . .

17.2.3. <u>Test Matrix Table</u>

	FRI	P Batch ID	Agi	ing	Tostod
Specimen ID	Fiber	Resin	Start	Finish	Testeu
	#	#	mm.dd.yy	mm.dd.yy	mm.dd.yy
DOA_C10T_TNS_DH_01_001 to 005			02.08.16	03.20.16	03.29.16
DOA_C10T_TNS_DH_03_001 to 005)08 ⁷ 0000 1847	02.00.10	06.12.16	06.20.16
DOA_C10T_ISS_DH_01_001 to 005		330 085 000	05 17 16	06.13.16	06.17.16
DOA_C10T_ISS_DH_03_001 to 005	le# 01/C	553(700 #97	05.17.10	09.05.16	09.12.16
DOA_CBHT_TG_DH_01_001 to 005	Sty 86/			03.20.16	03.31.16
DOA_CBHT_TG_DH_03_001 to 005	12	atch; MID atch 0GN	02 22 16	06.12.16	06.17.16
DOA_C10T_BSC_DH_01_001 to 005	-	B B B B B B B B B B B B B B B B B B B	02.22.10	03.20.16	04.01.16
DOA_C10T_BSC_DH_03_001 to 005		A IIO		06.12.16	06.22.16

17.3. SPECIMEN PREPARATION

17.3.1. <u>Specimen Size and Preparation Procedure</u>

Nominal specimen geometry, layout and preparation procedure varied for each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength. Individual specimen geometry parameters are reported the results section of this Chapter.

17.3.2. <u>Conditioning Parameters</u>

All specimens were aged in an environmental chamber at a constant temperature of $60 \pm 2^{\circ}C$ (140 $\pm 5^{\circ}F$) for two different duration periods of 1000 and 3000 hours prior testing. The specimens and chamber were visually checked approximately every 200 hours for quality purposes.

17.4. TEST SET-UP

17.4.1. <u>Set-up</u>

Upon finalization of aging exposure, specimens were removed from the environmental test chamber and set to rest in laboratory conditions. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior to physical and mechanical testing, a recovery period long enough so that the specimens reached temperature equilibrium with laboratory testing conditions was established (minimum 72 hours). Following the recovery period, specimens were tested. Refer to applicable test set-ups in in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

17.4.2. Rate and Method of Loading

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

17.5. TEST RESULTS

17.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90% or 85% percent retention for the 1000 and 3000 hrs. exposure, respectively, corresponding to the tensile and interlaminar shear strength properties, minimum glass transition temperature of 60°C (140°F), and of 1.38 MPa (200 psi) for shear bond strength. Detailed test results are reported in Section 17.5.4.

17.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after dry heat conditioning are reported in the tabulated results of this Chapter.

17.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; Chapter 9 for glass transition temperature; and Chapter 12 for shear bond strength.

17.5.4. <u>Tabulated Results</u>

Table 17.2 through Table 17.5 contain the tabulated summary results after dry heat conditioning for the tensile, interlaminar shear strength, glass transition temperature and shear bond strength tests, respectively. Refer to the last column of each table where it states the percentage retention of the physical mechanical property under evaluation. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 17.2 - Tab	ulated r	esults f	or tensil	e tests	for CFU-	10T (AS	STM D3	039) po	st dry l	heat conditionir	ng (ASTM D	3045)		
Specimen ID	/	4	P	nax	F	tu	Ec	hord	ευ	Failure Mode	Exposure	%	Retentio	n*
Specimento	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	με		hrs.	F ^{tu}	E ^{chord}	ευ
DOA_C10T_TNS_DH_01_001	13.10	0.020	20.15	4528	1537.4	223.0	85.53	12.41	1.80	SGM		109	95	115
DOA_C10T_TNS_DH_01_002	13.43	0.021	19.43	4367	1446.8	209.8	94.00	13.64	1.54	SGM		103	104	99
DOA_C10T_TNS_DH_01_003	13.58	0.021	20.51	4608	1509.9	219.0	82.63	11.99	1.83	LGT	1000	107	91	117
DOA_C10T_TNS_DH_01_004	13.21	0.020	18.72	4206	1416.3	205.4	88.35	12.82	1.60	SGB		101	98	103
DOA_C10T_TNS_DH_01_005	13.30	0.021	18.66	4194	1402.2	203.4	89.59	13.00	1.56	LGT		100	99	100
Average	13.32	0.021	19.49	4381	1462.5	212.1	88.02	12.77	1.67			104	97	107
S _{n-1}	0.18	0.000	0.83	186	58.9	8.5	4.29	0.62	0.14					
CV((%)	1.4	1.4	4.3	4.3	4.0	4.0	4.9	4.9	8.1					
DOA_C10T_TNS_DH_03_001	14.00	0.022	20.60	4628	1471.0	213.4	90.53	13.14	1.62	SGM		104	100	104
DOA_C10T_TNS_DH_03_002	14.65	0.023	19.44	4369	1327.0	192.5	91.59	13.29	1.45	SGM		94	101	93
DOA_C10T_TNS_DH_03_003	13.62	0.021	20.52	4612	1506.6	218.5	88.49	12.84	1.70	LGM	3000	107	98	109
DOA_C10T_TNS_DH_03_004	13.78	0.021	19.75	4438	1432.8	207.8	85.25	12.37	1.68	SGM		102	94	108
DOA_C10T_TNS_DH_03_005	14.59	0.023	18.74	4212	1284.0	186.2	88.99	12.91	1.44	SGM		91	98	93
Average	14.13	0.022	19.81	4452	1404.3	203.7	88.97	12.91	1.58			100	98	101
S _{n-1}	0.47	0.001	0.77	174	95.1	13.8	2.42	0.35	0.13					
CV((%))	33	33	39	39	6.8	68	27	27	8.0					

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

Specimen ID	k)		h	Р	m	F	bs	Failure Mode	Exposure	% Retention*
	mm	in	mm	in	kN	lbf	MPa	ksi		hrs.	F ^{sbs}
DOA_C10T_ISS_DH_01_001	10.60	0.42	4.98	0.20	3.68	828	52.32	7.59	Interlaminar Shear		116
DOA_C10T_ISS_DH_01_002	9.94	0.39	4.95	0.20	3.44	773	52.39	7.60	Interlaminar Shear		116
DOA_C10T_ISS_DH_01_003	10.36	0.41	4.88	0.19	3.65	819	54.07	7.84	Interlaminar Shear	1000	119
DOA_C10T_ISS_DH_01_004	9.78	0.39	4.99	0.20	3.43	770	52.62	7.63	Interlaminar Shear		116
DOA_C10T_ISS_DH_01_005	9.73	0.38	4.90	0.19	3.30	742	51.92	7.53	Interlaminar Shear		115
Average	10.08	0.40	4.94	0.19	3.50	786	52.66	7.64			116
S _{n-1}	0.38	0.02	0.05	0.00	0.16	36	0.83	0.12			
CV((%)	3.8	3.8	1.0	1.0	4.6	4.6	1.6	1.6			
DOA_C10T_ISS_DH_03_001	5.23	0.21	4.56	0.18	1.52	341	47.73	6.92	Interlaminar Shear		105
DOA_C10T_ISS_DH_03_002	5.35	0.21	4.52	0.18	1.58	354	48.88	7.09	Interlaminar Shear		108
DOA_C10T_ISS_DH_03_003	5.30	0.21	4.56	0.18	1.55	347	47.99	6.96	Interlaminar Shear	3000	106
DOA_C10T_ISS_DH_03_004	5.45	0.21	4.61	0.18	1.65	372	49.34	7.16	Interlaminar Shear		109
DOA_C10T_ISS_DH_03_005	5.19	0.20	4.51	0.18	1.53	343	48.92	7.10	Interlaminar Shear		108
Average	5.30	0.21	4.55	0.18	1.56	352	48.57	7.04			107
S _{n-1}	0.10	0.00	0.04	0.00	0.05	12	0.68	0.10			
CV((%)	1.9	1.9	0.9	1.1	3.5	3.5	1.4	1.4			

*Condition of acceptance is equivalent to 90% and 85% retention for 1000 and 3000hrs exposure, respectively.

Page 87 of 108

RECORD Document Number: R-5.10_DOA_13-12-11.2 Test Report

Specimen ID	7	g	Acceptance
Specimen ID	°C	° F	Criteria*
DOA_CBHT_TG_DH_01_001	81.5	178.7	Pass
DOA_CBHT_TG_DH_01_002	80.6	177.1	Pass
DOA_CBHT_TG_DH_01_003	79.5	175.1	Pass
DOA_CBHT_TG_DH_01_004	85.4	185.7	Pass
DOA_CBHT_TG_DH_01_005	82.7	180.9	Pass
Average	81.9	179.5	
S _{n-1}	2.3	4.1	
CV((%)	2.8	2.3	
DOA_CBHT_TG_DH_03_001	79.4	174.9	Pass
DOA_CBHT_TG_DH_03_002	83.4	182.1	Pass
DOA_CBHT_TG_DH_03_003	77.2	171.0	Pass
DOA_CBHT_TG_DH_03_004	86.5	187.7	Pass
DOA_CBHT_TG_DH_03_005	84.8	184.6	Pass
Average	82.3	180.1	
S _{n-1}	3.9	6.9	
CV((%)	4.7	3.9	

Table 17.4 - Tabulated results for glass transition temperature for Carbon Bond 300 HT (ASTM E1640) post dry heat conditioning (ASTM D3045)

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

Specimen ID	w	1	Š			P	T	d	Failure Mode	Exposure	Pass/Fail*
Specimentid	mm	in	mm	in	kN	lbf	MPa	psi		hrs.	
DOA_C10T_BSC_DH_01_001	25.40	1.00	228.60	9.00	9.94	2234	2.64	383	FRP debonding		Pass
DOA_C10T_BSC_DH_01_002	25.40	1.00	228.60	9.00	9.39	2109	2.49	361	FRP debonding		Pass
DOA_C10T_BSC_DH_01_003	25.40	1.00	228.60	9.00	9.08	2041	2.41	350	FRP debonding	1000	Pass
DOA_C10T_BSC_DH_01_004	25.40	1.00	228.60	9.00	8.62	1936	2.29	332	FRP debonding		Pass
DOA_C10T_BSC_DH_01_005	25.40	1.00	228.60	9.00	9.38	2107	2.49	361	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	9.28	2085	2.46	357			
S _{n-1}					0.48	109	0.13	19			
CV((%)					5.2	5.2	5.2	5.2			
DOA_C10T_BSC_DH_03_001	25.40	1.00	228.60	9.00	8.28	1861	2.20	319	FRP debonding		Pass
DOA_C10T_BSC_DH_03_002	25.40	1.00	228.60	9.00	9.47	2129	2.52	365	FRP debonding		Pass
DOA_C10T_BSC_DH_03_003	25.40	1.00	228.60	9.00	9.07	2039	2.39	346	FRP debonding	3000	Pass
DOA_C10T_BSC_DH_03_004	25.40	1.00	228.60	9.00	9.65	2169	2.56	372	FRP debonding		Pass
DOA_C10T_BSC_DH_03_005	25.40	1.00	228.60	9.00	9.32	2094	2.48	359	FRP debonding		Pass
Average	25.40	1.00	228.60	9.00	9.16	2058	2.43	352			
S _{n-1}					0.54	120	0.14	21			
CV((%)					5.8	5.8	5.9	5.9			

Table 17.5 - Tabulated results for shear bond strength tests for CFU-10T (Lab Method) post dry heat conditioning (ASTM D3045)

*Condition of acceptance is equivalent to $\tau_d > 200 \text{ psi}$

18. EXTERIOR EXPOSURE – ASTM D2565

18.1. TEST SUMMARY

18.1.1. <u>AC125 Section/s</u>

Section 5.9 for Exterior Exposure

18.1.2. <u>Reference StandARd/s</u>

D2565 - 99 StandARd Practice for Xenon-arc Exposure of Plastics Intended for Outdoor Applications

ASTM D3039/D3039M – 14, StandARd test method for Tensile Properties of Polymer Matrix Composite Materials.

18.1.3. <u>Test Objective</u>

Determine the ability of the materials under evaluation to resist deterioration of its electrical, mechanical, and optical properties caused by exposure to light, heat, and water.

18.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric with Carbon Bond 300 HT resin.

18.1.5. <u>Test Location</u>

Exposure under the supervision of SML technicians at: Florida Department of Transportation -State Materials Office, 5007 NE 39th Avenue, Gainesville, FL 32609 Tensile testing at: University of Miami, College of Engineering, Structures and Materials Laboratory, 1251 Memorial Dr., Coral Gables, FL, 33146

18.1.6. Laboratory Technician/s

Andrea Correa and Francisco De Caso

18.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-EE.

18.2. TEST MATRIX

18.2.1. <u>Specimen Number</u>

A total of 6 tests (one benchmark and 5 conditioned) are reported, refer to Table 18.1.

18.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified through the report using the format described in in Section 4.5 of this document.

18.2.3. <u>Test Matrix Table</u>

Table 18.1– Test matrix for external exposure specimens											
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Exposure Start - End (mm.dd.yy)	Tested (mm.dd.yy)						
DOA_C10T_TNS_EE_00_ 001		A: Batch# D553G3O081 and		N/A							
DOA_C10T_TNS_EE_02_ 001 to 005	Style# 1286/01/00	GMID# 97000852 B: Batch# D553G29000 and GMID#97000847	02.01.16	03.29.16 _ 06.20.16	07.01.16						

18.3. SPECIMEN PREPARATION

18.3.1. <u>Specimen Size</u>

Nominal specimen dimensions are reported in Table 18.2, including length and nominal thickness. Average values, determined based on three measurements of the width for each specimen prior testing were recorded to compute the area as reported in the results Chapter.

Table 18.2 – External exposu	re specin	nen no	minal dir	mensions
Specimen ID	Len	gth	Thick	iness
opecimento	mm	in.	mm	in.
DOA_C10T_TNS_EE_02	254.0	10.0	0.533	0.021

18.3.2. <u>Preparation Procedure</u>

The specimens were cut to the prescribed dimensions using a high precision diamond blade saw from different panels randomly selected as prepared and referenced in Section 4.2.1.

18.3.3. <u>Conditioning Parameters</u>

One specimen was conditioned under laboratory ambient conditions at room temperature $23 \pm 1^{\circ}$ C ($73 \pm 3^{\circ}$ F) and $60 \pm 5\%$ relative humidity, for at least 24 hrs prior testing. The remaining 5 specimens were exposed to cycles consisting of 102 minutes light and 18 minutes light and water spray in the weatherometer chamber for a minimum duration of 2,000 hours as seen in Figure 18.1. The black-body temperature is 145°F (63° C).

Figure 18.1 - Weatherometer chamber set-up with tensile specimens

18.4. TEST SET-UP

18.4.1. <u>Set-up</u>

Specimens were tested in pure tension as described in Section 5.4.1.

18.4.2. Rate and Method of Loading

Rate and method of loading are described in Section 5.4.2

18.5. TEST RESULTS

18.5.1. <u>Results Summary</u>

No specimens showed surface changes affecting performance (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as the 90% retention after the 2000 hrs. of exterior exposure.

18.5.2. <u>Modes of Failure</u>

Individual failure modes are reported in the tabulated results of this Chapter.

18.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5.

18.5.4. <u>Tabulated Results</u>

Table 13.3 contains the tabulated summary tensile test results after exterior exposure, and Table 13.5 the results for the control specimen. Refer to the last column of the table where it states the strength retention of the physical mechanical property under evaluation. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

	1	4	P	nax	F	tu	Ec	hord	ε	Failur e	Exposur	%	Retenti	on*
Specimen ID	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%	Mode	hrs.	F ^t u	E chor d	E u
DOA_C10T_TNS_EE_02_00 1	10.1 3	0.01 6	14.2 0	319 1	1400. 6	203.1 4	87.0 4	12.6 3	1.6 1	LGM		99	96	10 3
DOA_C10T_TNS_EE_02_00 2	10.3 1	0.01 6	13.0 6	293 4	1265. 8	183.5 9	84.1 5	12.2 1	1.5 0	AGM		90	93	97
DOA_C10T_TNS_EE_02_00 3	10.2 3	0.01 6	13.7 5	308 9	1343. 3	194.8 3	84.0 1	12.1 9	1.6 0	SGM	2000	95	93	10 3
DOA_C10T_TNS_EE_02_00 4	9.90	0.01 5	13.4 2	301 6	1354. 6	196.4 7	89.9 4	13.0 5	1.5 1	LGM		96	99	97
DOA_C10T_TNS_EE_02_00 5	10.0 8	0.01 6	12.9 4	290 7	1282. 8	186.0 6	82.7 7	12.0 1	1.5 5	AGM		91	92	99
Average	10.1 3	0.01 6	13.4 7	302 7	1329. 4	192.8 2	85.5 8	12.4 2	1.5 5			94	95	10 0
S _{n-1}	0.15	0.00 0	0.52	116	55.0	7.98	2.90	0.42	0.0 5					
CV((%)	1.5	1.5	3.8	3.8	4.1	4.1	3.4	3.4	3.2					

.... *.*....

*Condition of acceptance is equivalent to 90% based on Chapter 5 values.

Table 13.4 – Exterior Exposure control test specimen										
Specimen ID	1	4	P	nax	F	tu	E	hord	ευ	Failure
	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%	Mode
DOA_C10T_TNS_EE_00_001	10.12	0.016	15.03	3378	1484.7	215.34	91.32	13.25	1.63	SGM

19. FUEL RESISTANCE – ASTM C581

19.1. TEST SUMMARY

19.1.1. <u>AC125 Section/s</u>

Section 5.15, Table 2 for physical and mechanical properties of FRP composite materials.

19.1.2. <u>Reference Standard/s</u>

ASTM C581, Standard practice for determining chemical resistance of thermosetting Resins used in Glass-Fiber-Reinforced structures intended for liquid service

ASTM D3039/D3039M-14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

ASTM D2344/D2344M-13, Standard test method for short-beam strength of polymer matrix composite materials and their laminates.

ASTM E1640-13, Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis.

19.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation, glass transition temperature, and interlaminar shear strength, after exposure to diesel fuel reagent.

19.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin.

19.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

19.1.6. <u>Laboratory Technician/s</u>

Zahra Karim, Tais Hamilton and Philip Lavonas

19.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-FR.

19.2. TEST MATRIX

19.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions for physical/mechanical test designation (ASTM D3039, ASTM D2344 and ASTM E1640) were performed. A total of 5 per test type are reported, refer to Table 19.1.

19.2.2. <u>Specimen ID Nomenclature</u>

Specimens are identified throughout the report using the format described in Section 4.5 of this document.

19.2.3. <u>Test Matrix Table</u>

Table 19.1– Test matr	ix for tensile tes	sts post fuel resistance	e conditioning	
Specimen ID	Fiber Lot #	Resin Batch #	Specimen Preparation (mm.dd.yy)	Tested (mm.dd.yy)
DOA_C10T_TNS_FR_001 to 005		A: Batch# D553G3O081 and	02.01.16	03.03.16
DOA_C10T_ISS_FR_001 to 005	Style# 1286/01/00	GMID# 97000852 B: Batch#	05.06.16	02.29.16
DOA_CBHT_TG_FR_001 to 005		GMID#97000847	02.17.16	03.09.16

19.3. SPECIMEN PREPARATION

19.3.1. Specimen Size and Preparation Procedure

Nominal specimen geometry, layout and preparation procedure for varied each test type, as previously referenced in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; and Chapter 9 for glass transition temperature. Individual specimen geometry parameters are reported the results section of this Chapter.

19.3.2. <u>Conditioning Parameters</u>

FRP panels were exposed to diesel fuel reagent by submerging them in an environmental chamber for minimum four hours according to ASTM C581, at laboratory conditions.

19.4. TEST SET-UP

19.4.1. <u>Set-up</u>

Upon completion of diesel exposure, specimens were removed from the chamber and wiped to dry the surface. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior physical and mechanical testing, a recovery period long enough so that the specimens reached equilibrium with laboratory testing conditions was established, (generally 24 hours). Following the recovery period, specimens were tested. Refer to applicable test set-ups in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; and Chapter 9 for glass transition temperature.

19.4.2. Rate and Method of Loading

Refer to applicable rates and method of loading in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; and Chapter 9 for glass transition temperature.

19.5. TEST RESULTS

19.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50. No specific conditions of acceptance are stated this test under AC125, nonetheless, a similar analytical approach has been followed to the other aging environments, where the percentage of retention has been reported, refer to Section 19.5.4 for detailed results.

19.5.2. <u>Modes of Failure</u>

Modes of failure for the different physical and mechanical tests after fuel resistance conditioning cycles are reported in the tabulated results of this Chapter.

19.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests; Chapter 10 for interlaminar shear strength; and Chapter 9 for glass transition temperature.

19.5.4. <u>Tabulated Results</u>

Table 19.2 through Table 19.4, contain the tabulated summary results after fuel resistance exposure for the tensile, interlaminar shear strength and glass transition temperature tests respectively. Average, standard deviation (S_{n-1}), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Specimen ID		4	P	lax	F	tu	Ect	nord	٤u	Failure	Exposure	%	Retentio	on*
Specimento	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	με	Mode	hrs.	F ^{tu}	Echord	εu
DOA_C10T_TNS_FR_001	13.70	0.021	18.60	4180	1357.5	196.88	82.49	11.97	1.64	LGM		96	91	106
DOA_C10T_TNS_FR_002	13.67	0.021	17.69	3976	1293.8	187.64	86.63	12.57	1.49	AGM		92	96	96
DOA_C10T_TNS_FR_003	13.44	0.021	18.23	4096	1355.7	196.62	89.94	13.05	1.51	LGM	4	96	99	97
DOA_C10T_TNS_FR_004	13.51	0.021	17.84	4008	1319.9	191.43	86.01	12.48	1.53	SGM		94	95	99
DOA_C10T_TNS_FR_005	13.83	0.021	18.26	4103	1319.4	191.36	83.32	12.09	1.58	SGM		94	92	102
Average	13.63	0.021	18.12	4073	1329.2	192.79	85.68	12.43	1.55			94	95	100
S _{n-1}	0.16	0.000	0.36	81	27.1	3.93	2.95	0.43	0.06					
CV((%)	1.2	1.2	2.0	2.0	2.0	2.0	3.4	3.4	4.0					

Table 19.2 - Tabulated results for tensile tests for CFU-10T (ASTM D3039) post fuel resistance conditioning (ASTM C581)

*No conditions of acceptance specified in AC125

Table 19.3 -	 Tabulated results for interlaminar shear tests CEU-10T ((ASTM D2344) post fuel resistance conditioning (ASTM C581)
10010 1010		

Specimen ID		b		h	Р	m	Fs	bs	Failure Mode	Exposure	% Retention
Specimento	mm	in	mm	in	kN	lbf	MPa	ksi		hrs.	F ^{sbs}
DOA_C10T_ISS_FR_001	6.17	0.243	4.39	0.173	1.62	365	44.90	6.51	Interlaminar shear		99
DOA_C10T_ISS_FR_002	6.02	0.237	4.55	0.179	1.51	339	41.32	5.99	Interlaminar shear		92
DOA_C10T_ISS_FR_003	6.81	0.268	4.37	0.172	1.61	362	40.61	5.89	Interlaminar shear	4	90
DOA_C10T_ISS_FR_004	5.72	0.225	4.34	0.171	1.37	307	41.26	5.98	Interlaminar shear		91
DOA_C10T_ISS_FR_005	6.63	0.261	4.29	0.169	1.62	365	42.79	6.21	Interlaminar shear		95
Average	6.27	0.247	4.39	0.173	1.55	348	42.18	6.12			93
S _{n-1}	0.45	0.018	0.10	0.004	0.11	25	1.72	0.25			
CV((%)	7.1	7.1	2.2	2.2	7.2	7.2	4.1	4.1			

*No conditions of acceptance specified in AC125

Specimen ID	Т	g	Exposure	Acceptance
Specimen ID	°C	°F	Hrs.	Criteria*
DOA_CBHT_TG_FR_001	63.9	147.0		Pass
DOA_CBHT_TG_FR_002	60.8	141.4		Pass
DOA_CBHT_TG_FR_003	59.8	139.6	4	Pass
DOA_CBHT_TG_FR_004	65.3	149.5		Pass
DOA_CBHT_TG_FR_005	64.2	147.6		Pass
Average	62.8	145.0		
S _{n-1}	2.4	4.3		
CV(%)	3.8	2.9		

Table 19.4 -Tabulated results for glass transition temperature for Carbon Bond 300 HT (ASTM D2344) post fuel resistance conditioning (ASTM C581)

*Condition of acceptance is equivalent to $T_g > 60^{\circ}C (140^{\circ}F)$

20. ALKALINE SOIL RESISTANCE – ASTM D3083

20.1. TEST SUMMARY

20.1.1. <u>AC125 Section/s</u>

Section 5.12, Alkaline Soil Resistance.

20.1.2. <u>Reference Standard/s</u>

ASTM D3083-89, Specification for Flexible Poly (Vinyl Chloride) Plastic Sheeting for Pond, Canal, and Reservoir Lining (Withdrawn 1998)

ASTM D3039/D3039M – 14, Standard test method for Tensile Properties of Polymer Matrix Composite Materials.

20.1.3. <u>Test Objective</u>

Determine the average experimental percentage retention of tensile strength, tensile modulus, elongation post exposure to alkaline soil.

20.1.4. <u>Product/s Under Evaluation</u>

CFU-10T fabric and Carbon Bond 300 HT resin.

20.1.5. <u>Test Location</u>

Structures and Materials Laboratory, SML, Main Laboratory, University of Miami, 1251 Memorial Dr., MEB108 Coral Gables, FL, 33146

20.1.6. Laboratory Technician/s

Francisco De Caso

20.1.7. <u>Technical Test Record</u>

The date of each test; variations to the test method as applicable; calibration information for all measurements and test equipment; identification of the material tested; temperature and humidity of testing laboratory; and other applicable test data or details are provided in the Technical Test Record document number TDS-DOA-SR.

20.2. TEST MATRIX

20.2.1. <u>Specimen Number</u>

Specimens were made from different FRP panels, where five test repetitions were tested.

20.2.2. Specimen ID Nomenclature

Specimens are identified through the report using the format described in Section 4.5 of this document.

20.2.3. <u>Test Matrix Table</u>

Table 2	20.1– Test matrix f	for tensile tests post fuel r	resistance coi	nditioning	
	FR	P Batch ID	Ag	Tested	
Specimen ID	Specimen ID Fiber Re		Start	Finish	Testeu
	#	#	mm.dd.yy	mm.dd.yy	mm.dd.yy
DOA_C10T_TNS_ SR_01_001 to 005	Style# 1286/01/00	A: Batch# D553G3O081 and GMID# 97000852 B: Batch# D553G29000 and GMID#97000847	05.17.16	06.13.16	08.17.16

20.3. SPECIMEN PREPARATION

20.3.1. Specimen Size and Preparation Procedure

Nominal specimen geometry, layout and preparation procedure are previously referenced in Chapter 5 for tensile tests.

20.3.2. <u>Conditioning Parameters</u>

All specimens were conditioned to be aged by vertically burial to a depth of approximately 127 mm (5 in.) in a soil chamber containing a soil rich in cellulose-destroying micro-organisms (prepared with garden compost) for a period of 1000 hrs. where each specimen was surrounded by soil not touch each other. The conditions of the soil chamber were a pH of 7.0, moisture between 25 and 30%, and a temperature $35 \pm 2^{\circ}$ C ($95 \pm 6^{\circ}$ F). The soil chamber was checked approximately every 200 hours to ensure proper conditions and microbiological activity with the use of untreated cotton duck for quality purposes.

20.4. TEST SET-UP

20.4.1. <u>Set-up</u>

Upon completion of soil burial exposure, specimens were removed from the environmental test chamber and wiped to dry the surface. A visual inspection was conducted immediately after the removal of the specimens from the chamber. Prior to physical and mechanical testing, a recovery period long enough so that the specimens reached moisture equilibrium with laboratory testing conditions was established (minimum 72 hours). Following the recovery period, specimens were tested. Refer to applicable test set-ups in in Chapter 5 for tensile tests

20.4.2. Rate and Method of Loading

Refer to applicable rate and method of loading in Chapter 5.

20.5. TEST RESULTS

20.5.1. <u>Results Summary</u>

No specimens showed surface changes (such as erosion, cracking, crazing and chalking) after a visual inspection with a high resolution USB microscope with a varying magnification from x20 to x50, meeting the conditions of acceptance of AC125, as well as 90% retention post 1000 hrs. of exposure

20.5.2. <u>Modes of Failure</u>

Modes of failure are reported in the tabulated results of this Chapter.

20.5.3. <u>Calculations</u>

Refer to applicable calculations and analysis of data in Chapter 5 for tensile tests.

20.5.4. <u>Tabulated Results</u>

Table 20.2 contains the tabulated summary results after alkaline soil resistance conditioning for the tensile strength test. Refer to the last column of each table where it states the percentage retention of the physical mechanical property under evaluation. Average, standard deviation (S_n - η), and coefficient of variance (CV) values are also reported, based on the complete set of specimens under evaluation for each product.

Table 20.2 - Tabulated results for tensile tests for CFU-10T (ASTM D3039) post alkaline soil resistance conditioning (ASTM D3083)														
Specimen ID	Α		P ^{max}		F ^{tu}		Echord		εu	Failure	Exposure	%	Retentio	on*
	mm²	in²	kN	lbs	MPa	ksi	GPa	Msi	%	Mode	hrs.	F ^{tu}	Echord	٤u
DOA_C10T_TNS_SR_01_001	24.59	0.968	13.11	0.020	19.12	4297	1457.4	211.38	93.11	13.51		103	103	100
DOA_C10T_TNS_SR_01_002	25.37	0.999	13.53	0.021	17.31	3891	1278.8	185.47	87.11	12.64		91	96	94
DOA_C10T_TNS_SR_01_003	25.53	1.005	13.62	0.021	19.17	4308	1407.4	204.12	85.94	12.47	1000	100	95	105
DOA_C10T_TNS_SR_01_004	25.32	0.997	13.51	0.021	18.81	4228	1392.3	201.94	92.63	13.44		99	102	96
DOA_C10T_TNS_SR_01_005	25.76	1.014	13.74	0.021	19.60	4405	1426.3	206.87	85.87	12.46		101	95	107
Average	25.31	0.997	13.50	0.021	18.80	4226	1392.4	201.96	88.93	12.90		99	98	101
S _{n-1}	0.44	0.017	0.23	0.000	0.88	198	68.0	9.87	3.63	0.53				
CV((%)	1.7	1.7	1.7	1.7	4.7	4.7	4.9	4.9	4.1	4.1				

*Condition of acceptance is equivalent to 90%

21. INTERIOR FINISH – ASTM E84

The interior finish test (Section 5.14 of AC125) was performed by an independent laboratory QAI *Laboratories, Certification Testing Inspection*, which is an ISO 17025 accredited laboratory by the International Accreditation Service (IAS). The test report was issued directly to the client.

Refer to attached documents:

Test Report number: **RJ4497-2**, with test results equivalent to a flame spread index of 0, and smoke development index of 10. Refer to report for full test results.

Test Report number: **RJ3831-1-Rev. 1**, with test results equivalent to a flame spread index of 0, and smoke development index of 15. Refer to report for full test results.

22. COLUMN: FLEXURAL TEST

22.1. TEST SUMMARY

22.1.1. AC125 Section/s

Section 5.2.1 for Columns: Flexural Tests

22.1.2. Reference Standard/s

An internal laboratory developed standard test procedure is used for the flexural tests, available upon request. The procedure was developed from good laboratory practices and university research test programs of reinforced concrete (RC) structural elements testing, including columns.

22.1.3. Test Objective

Evaluate the flexural strengthening characteristics of the FRP composite materials under evaluation when applied to RC columns elements with different concrete strengths and FRP strengthening levels, subjected to flexure (bending).

22.1.4. Product/s Under Evaluation

CFU-10T fabric with Carbon Bond 300 HT resin

22.1.5. Test Location

University of Miami, College of Engineering, Structures and Materials Off-Site Testing Location (OTL) Laboratory located at North Carolina State University at the Construction Facilities Laboratory (CFL).

22.1.6. Laboratory Technician/s

Francisco De Caso and Greg Lucier

22.1.7. Technical Test Record

23. COLUMN: SHEAR TEST

23.1. TEST SUMMARY

23.1.1. AC125 Section/s

Section 5.2.2 for Columns: Shear Tests

23.1.2. Reference Standard/s

An internal laboratory developed standard test procedure is used for the column shear tests, available upon request. The procedure was developed from good laboratory practices and university research test programs of reinforced concrete (RC) structural elements testing, including columns.

23.1.3. Test Objective

Evaluate the shear strengthening characteristics of the FRP composite system under evaluation when applied to RC columns elements with different concrete strengths and FRP strengthening levels, subjected to shear.

23.1.4. Product/s Under Evaluation

CFU-10T fabric with Carbon Bond 300 HT resin

23.1.5. Test Location

University of Miami, College of Engineering, Structures and Materials Off-Site Testing Location (OTL) Laboratory located at North Carolina State University at the Construction Facilities Laboratory (CFL).

23.1.6. Laboratory Technician/s

Francisco De Caso and Greg Lucier

23.1.7. Technical Test Record

24. COLUMN: AXIAL TEST

24.1. TEST SUMMARY

24.1.1. AC125 Section/s

Section 5.2.3 for Columns: Pure axial Tests

24.1.2. Reference Standard/s

An internal laboratory developed standard test procedure is used for the column axial tests, available upon request. The procedure was developed from good laboratory practices and university research test programs of reinforced concrete (RC) structural elements testing, including columns.

24.1.3. Test Objective

Evaluate the axial strengthening characteristics of the FRP composite system under evaluation when applied to RC columns elements with different concrete strengths and FRP strengthening levels, subjected to axial force.

24.1.4. Product/s Under Evaluation

CFU-10T fabric with Carbon Bond 300 HT resin

24.1.5. Test Location

University of Miami, College of Engineering, Structures and Materials Off-Site Testing Location (OTL) Laboratory located at North Carolina State University at the Construction Facilities Laboratory (CFL).

24.1.6. Laboratory Technician/s

Francisco De Caso and Greg Lucier

24.1.7. Technical Test Record

25. WALL: FLEXURAL TEST

25.1. TEST SUMMARY

25.1.1. AC125 Section/s

Section 5.2.2 for Shear Tests

25.1.2. Reference Standard/s

An internal laboratory developed standard test procedure is used for the flexural tests, available upon request. The procedure was developed from good laboratory practices and university research test programs of masonry walls structural elements testing, including columns.

25.1.3. Test Objective

Evaluate the structural performance of the FRP composite system under evaluation when applied to masonry walls subjected to out-of-plane load.

25.1.4. Product/s Under Evaluation

CFU-10T fabric with Carbon Bond 300 HT resin

25.1.5. Test Location

University of Miami, College of Engineering, Structures and Materials Off-Site Testing Location (OTL) Laboratory located at North Carolina State University at the Construction Facilities Laboratory (CFL).

25.1.6. Laboratory Technician/s

Francisco De Caso and Greg Lucier

25.1.7. <u>Technical Test Record</u>

26. WALL: SHEAR TEST

26.1. TEST SUMMARY

26.1.1. AC125 Section/s

Section 5.2.2 for Shear Tests

26.1.2. Reference Standard/s

An internal laboratory developed standard test procedure is used for the shear tests, available upon request. The procedure was developed from good laboratory practices and university research test programs of masonry walls structural elements testing, including columns.

26.1.3. Test Objective

Evaluate the structural performance of the FRP composite system under evaluation when applied to masonry walls subjected to in-plane shear.

26.1.4. Product/s Under Evaluation

CFU-10T fabric with Carbon Bond 300 HT resin

26.1.5. <u>Test Location</u>

University of Miami, College of Engineering, Structures and Materials Off-Site Testing Location (OTL) Laboratory located at North Carolina State University at the Construction Facilities Laboratory (CFL).

26.1.6. Laboratory Technician/s

Francisco De Caso and Greg Lucier

26.1.7. Technical Test Record

♦ END OF TEST REPORT ♦

Test Report on DowAksa CFRP system

General:

This report is prepared in order to provide the necessary information and data to obtain approval of DowAksa Carbon Fiber Reinforcement Polymer (CFRP) System used as an externally bonded reinforcement for flexural strengthening of concrete beams. The report contains experimental verification of design equations and assumptions outlined in the International Code Council Acceptance Criteria (ICC-ES-AC125) for the engineering analysis of the concrete and masonry structural members strengthened, using DowAksa CarbonWrapTM fiber reinforced composite system.

The report complies with ICC-ES-AC85.

Laboratory Information:

The CEEM Structure Laboratory at the University of Arizona (TL-619) is an accredited laboratory complying with ISO/IES Standard 17025 by the international Accreditation Service (IAS). The scope of the loboratory's accreditation includes the specific type of testing covered in this report.

Laboratory accreditation certification is attached to the end of this report (Appendix I). Address and phone number of the lab is indicated on footer.

Standard Test Method: According to ICC-ES-AC125 criteria

Description of tested product:

- DowAksa CFU20T Carbon Fabric, Medium Weight Uniderectional Fabric,
- CarbonBondTM 300-HT Saturant Resin System.

DowAksa CFU20T Carbon Fabric is attached to the soffit of the beam in order to increase the flexural capacity of the concrete member. This Fabric is attached to the concrete using DowAksa epoxy system called CarbonBondTM 300-HT Saturant Resin System. Properties of these materials are attached to this report (Appendix II).

General installation instruction provided by DowAksa is also attached in Appendix III.

Test Description:

Concrete Beam Flexural Test, Group 1 of proposed plan

Test setup and Procedure:

The experimental justification consisted of casting 4 concrete beams with specification indicated in Figure.1.

Two samples with different compressive srengths were tested as control samples without any FRP strengthening and the remaining two were strengthened using DowAksa CFRP system.

Report Date: 04.19.16

Figure. 1:

BEAM SECTION

Fax: 520-621-2550

Specimens were loaded continuously and without shock. Load was applied at a rate that constantly increases the maximum stress on the tension face at 150 psi/min. (According to ASTM C78, this rate should be between 0.9 and 1.2 MPa/min [125 and 175 psi/min] until rupture occurs.)

The loading rate is calculated using the following equation:

$$r = \frac{Sbd^2}{L} \tag{ASTM C78-10}$$

where:

r = loading rate, N/min [lb/min],

S = rate of increase in maximum stress on the tension face, MPa/min [psi/min],

b = average width of the specimen as oriented for testing, mm [in.],

d = average depth of the specimen as oriented for testing, mm [in.], and

L = span length, mm [in.].

So, Considering S=150 psi/min, the load rating used in this test is 1.8 kip/min.

Notation:

- f_y : Specified yield strength of nonprestressed steel reinforcement
- ε_s : Strain level in nonprestressed steel reinforcement
- ε_y : Strain corresponding to yield strength of nonprestressed steel reinforcement
- E_s : Modulus of Elasticity of steel
- f_c' : Specified compressive strength of concrete
- E_c : Modulus of elasticity of concrete
- α_1 : Multiplier on f_c' to determine intensity of an equivalent rectangular stress distribution for concrete
- β_1 : Ratio of depth of equivalent rectangular stress block to depth of the neutral axis
- b: width of compression face of member
- c: Distance from extreme compression fiber to the neutral axis
- ε_{cu} : Ultimate axial strain of unconfined concrete
- ε_c' : Maximum strain of unconfined concrete corresponding to f_c'
- ε'_s : Strain level in nonprestressed steel reinforcement on top of the section
- A_s : Area of nonprestressed steel reinforcement
- $A_{s'}$: Area of nonprestressed steel reinforcement on top of the section
- f_s' : Stress level of steel reinforcement on top of the section
- b_f : Width of fabric
- t_f : Thickness of fabric
- A_f : Area of fabric
- E_f : Modulus of elasticity of fabric
- ε_{fd} : Debonding strain of externally bonded FRP reinforcement
- ε_{fe} : Effective strainlevel in FRP reinforcement attained at failure
- ε_{fu} : Design rupture strain of FRP reinforcement
- Ψ_f : FRP Strength reduction factor

CEEM STRUCTURE LABORATORY - TL619

Sample Information:

Sample ID#: ICC 1a.1

Date of Testing: 03.17.2016

Temperature at the time of testing: 72°F

Average Width of Beam (3 measurements): 7.95 inch

Average Depth of Beam (3 measurements): 12.05 inch

Clear Span Length: 96.4 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (fc')</u> : 3485 psi	3000 ± 500

<u>Steel rebar grade:</u> 60 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

For the control sample, since the amount of steel rebars was small, i.e., Underreinforced, the strain in the steel (ε_s) was significantly larger than ε_y , therefore, the steel stress exceeded the yeild point and reached to its ultimate rupture point. So in calculating the ultimate load, the ultimate steel stress, f_u , was used.

Analysis:

 $\varepsilon_{y} = \frac{f_{y}}{E_{s}} = 60,000/29,000,000=0.00207$ $f_{c}' = 3485 \text{ psi} \rightarrow \beta_{1}=0.85 \rightarrow a=\beta_{1}.c$ From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon_{s}'}{c-d'}$ From Equilibrium Equation: $\sum Compression \ forces = \sum Tension \ forces$ $0.85^{*}f_{c}'^{*}b^{*}a+f_{s}'^{*}A_{s'} = f_{y}^{*}A_{s}$ Finding $c \rightarrow c = 1.192$ inch $a = 0.85^{*}1.192 = 1.0132$ inch $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon_{s}'}{c-d'} \rightarrow \varepsilon_{s}' = 0.003 * \frac{1.5-1.192}{1.192} = 0.000775 < \varepsilon_{y}$ O.K. $f_{s}' = 22.48$ ksi Tension $\sum C = 24.11 \text{ kips}$ $\sum T = 24.09 \text{ kips}$ c = 1.285 acceptable

Calculate Moment Capacity of section:

M =
$$f_s' * A_{s'} * (1.5 - a/2) + f_y * A_s * (10.5 - a/2) = 202.8$$
 kip.in = 16.9 kip.ft

Mesured results:

 $M_{measured} = 20.85$ kip.ft

Failure Mode:

Mode of failure was confirmed.

Steel rebars reaches to ε_y before concrete crushed.

CEEM STRUCTURE LABORATORY - TL619

Page **8** of **34**

Identification Number of the test report: DowAksa-BFT-01

Report Date: 04.19.16

Photographs:

Sample ID#

Test Setup

Failure of beam

Report Date: 04.19.16

Sample Information:

Sample ID#: ICC 1a.2

Temperature at the time of testing: 72°F

<u>Date of Testing:</u> 03.24.2016

Average Width of Beam: 8.0 inch

Average Depth of Beam: 12.0 inch

Clear Span Length: 96.4 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (fc')</u> : 3500 psi	3000±500

<u>Steel rebar grade: 60</u>

 $f_v = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system **Thickness** = 0.0354 inch **Modulus of Elasticity** = 16220 ksi **Width of fabric** = 6 inch ε_{fu} = 1.3%

Design Criteria and minimum acceptable level:

 $\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$ $f_c' = 3500 \text{ psi} \rightarrow \beta_1 = 0.85 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation:

 Σ Compression forces = Σ Tension forces

$$0.85*f_c'*b*a+f_s'*A_{s'} = f_y*A_s+(b_f, t_f). \ \varepsilon_{fe}.E_f$$
 Where $\varepsilon_{fe} = 0.003\frac{d_f-c}{c}$

Solving for $c \rightarrow c = 2.451$ inch

a = 0.85 * 2.451 = 2.083 inch

From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5 - 2.451}{2.451} = 0.0012 < \varepsilon_y$ O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f_c'}{n.E_f.t_f}} = 0.083 \sqrt{\frac{3.5}{1*16220*0.0354}} = 0.00648 < 0.9 \ \varepsilon_{fu} = 0.0117$$

CEEM STRUCTURE LABORATORY - TL619

From Strain diagram:

$$\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 2.451}{2.451} = 0.0117 > \varepsilon_{fd} = 0.00648$$
 N.G.
Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure:
So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.00648$

From Strain Diagram: :
$$\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.00648 \frac{c}{12-c}$$

 $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.00648 \frac{c-1.5}{12-c}$

$$E_c \ (ksi) = 57\sqrt{f_c' \ (psi)} = 57\sqrt{3500} = 3372 \ \text{ksi}$$

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7 f_c'}{E_c} = 0.001764$

$$\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$$
$$\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$$

From Equilibrium Equation:

 $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$

Solving for c:

c = 2.075 inch;

CEEM STRUCTURE LABORATORY - TL619

$$\varepsilon_c = 0.00648 \frac{c}{12-c} = 0.00648 * \frac{2.075}{12-2.075} = 0.00135$$

Calculate Moment Capacity of section:

$$\begin{split} \mathbf{M} &= f_y * A_s * (\ d - \beta_1.\ c \ /2) + \Psi_f.\ A_f.\ f_{fe}.\ (d - \beta_1.\ c \ /2) - f_{s'} * A_{s'} \\ \mathbf{M} &= 28.31 \ \text{kip.ft} \end{split}$$

Measured Results:

Moment capacity:

$M_{measured} = 31.39$ kip.ft	compared to	$M_{Analysis} = 28.31$ kip.ft	O.K.
	±	1110000,000	

CFRP Strain at specimen failure:

$\epsilon_f = 0.00642$	compared to	$\varepsilon_{fe} = 0.00648$ in Analysis.	O.K.
,		,	

Concrete Strain at specimen failure:

 $\varepsilon_c = 0.00114$ compared to $\varepsilon_c = 0.00135$ in Analysis. O.K.

Failure Mode:

Mode of failure was confirmed. FRP controlled the failure.

Page 13 of 34

Identification Number of the test report: DowAksa-BFT-01

Report Date: 04.19.16

Photographs:

Sample ID#

Test setup

Failure of Beam

Report Date: 04.19.16

Sample Information:

Sample ID#: ICC 1b.1

Temperature at the time of testing: 71°F

<u>Date of Testing</u>: 03.28.2016

Average Width of Beam: 8.00 inch

Average Depth of Beam: 12.00 inch

<u>Clear Span Length:</u>96.4 inch

Concrete Compressive Strength:

Test Specimen	Proposal information		
Average Compressive Strength of five sample (fc'): 5520 psi	6000±500		

<u>Steel rebar grade:</u> 60 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

For the control sample, since the amount of steel rebars was small, the measured strain in steel, ε_s , was significantly larger than ε_y , the steel stress exceeded the yield value and reached to its ultimate.

Analysis:

$$\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$$

 $f_c' = 5520 \text{ psi} \rightarrow \beta_1 = 1.05 - 0.05 \frac{f_c'}{1000} = 0.774 \rightarrow a = \beta_1.c$

Report Date: 04.19.16

From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'}$ From Equilibrium Equation: $\sum Compression \ forces = \sum Tension \ forces$ $0.85^*f'_c b^*a + f'_s A_{s'} = f_y A_s$

Solving for $c \rightarrow c = 0.995$ inch

$$a = 0.774 * 1.0 = 0.774$$
 inch

$$\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \to \ \varepsilon'_s = 0.003 * \frac{1.5 - 0.995}{0.995} = 0.0015 < \varepsilon_y \quad \text{O.K.}$$

 $f'_s = 44.156$ ksi Tension

$$\sum C = 28.9 \text{ kips}$$

$$\sum T = 28.5 \text{ kips}$$

$$C = 0.995 \text{ acceptable}$$

Calculate Moment Capacity of section:

$$M = f'_{s} A_{s'} (1.5 - a/2) + f_{y} A_{s} (10.5 - a/2) = 211.1 \text{ kip.in} = 17.6 \text{ kip.ft}$$
$$M_{measured} = 20 \text{ kip.ft}$$

Failure Mode:

Mode of failure was confirmed.

Steel rebars reaches ε_y before concrete crushes

CEEM STRUCTURE LABORATORY - TL619

Page 16 of 34

Identification Number of the test report: DowAksa-BFT-01

Report Date: 04.19.16

Photographs:

Test setup

Sample ID#

Failure of beam

Report Date: 04.19.16

Sample Information:

Sample ID#: ICC 1b.2

Temperature at the time of testing: 72°F

<u>Date of Testing:</u> 03.30.2016

Average Width of Beam: 8.0 inch

Average Depth of Beam: 12.0 inch

Clear Span Length: 96.4 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (fc')</u> : 5500 psi	6000 ± 500

<u>Steel rebar grade: 60</u>

 $f_v = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy **Thickness** = 0.0354 inch **Modulus of Elasticity** = 16220 ksi **Width of fabric** = 6 inch ε_{fe} = 1.3%

Design Criteria and minimum acceptable level:

$$\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$$

 $f_c' = 5500 \text{ psi} \rightarrow \beta_1 = 1.05 - 0.05 \frac{f_c'}{1000} \rightarrow \beta_1 = 0.775 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation: $\sum Compression \ forces = \sum Tension \ forces$ $0.85^* f_c'^* b^* a + f_s'^* A_{s'} = f_y^* A_s + (b_f. t_f). \ \varepsilon_{fe}. E_f \qquad \text{Where} \ \varepsilon_{fe} = 0.003 \frac{d_f - c}{c}$

Solving for $c \rightarrow c = 2.0314$ inch

$$a = 0.775 * 2.0314 = 1.5743$$
 inch

From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5 - 2.0314}{2.0314} = 0.00078 < \varepsilon_y$ O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f'_c}{n.E_f.t_f}} = 0.083 \sqrt{\frac{5.5}{1*16220*0.0354}} = 0.00812 < 0.9 \ \varepsilon_{fu} = 0.0117$$

From Strain diagram: $\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 2.0314}{2.0314} = 0.01472 > \varepsilon_{fd} = 0.00812$ N.G.

CEEM STRUCTURE LABORATORY - TL619

Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure: So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.00812$

From Strain Diagram: : $\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.00812 \frac{c}{12-c}$ $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.00812 \frac{c-1.5}{12-c}$

 $E_c \ (ksi) = 57\sqrt{f_c' \ (psi)} = 57\sqrt{5500} = 4227 \ \text{ksi}$

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7f_c'}{\varepsilon_c} = 0.002212$ $\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$ $\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$

From Equilibrium Equation: $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$

Solving for c: c = 1.788 inch

Report Date: 04.19.16

Calculate Moment Capacity of section:

$$\begin{split} \mathbf{M} &= f_y * A_s * (\ d - \beta_1 . \ c \ /2) + \Psi_f . \ A_f . \ f_{fe} . \ (d - \beta_1 . \ c \ /2) - f_{s'} * A_{s'} \\ \mathbf{M} &= 33.25 \ \text{kip.ft} \\ M_{measured} &= 34.1 \ \text{kip.ft} \end{split}$$

Measured results:

Moment capacity:

$M_{measured} = 34.1$ kip.ft	compared to	$M_{Analysis} = 33.25$ kip.ft	O.K
11104154104	1	11///////	

CFRP Strain at specimen failure:

 $\varepsilon_f = 0.00792$ compared to $\varepsilon_{fe} = 0.00812$ in Analysis. O.K.

Concrete Strain at specimen failure:

 $\varepsilon_c = 0.00111$ compared to $\varepsilon_c = 0.0014$ in Analysis. O.K.

Failure Mode:

Mode of Failure was confirmed.

Failure: FRP controlled the failure.

Debonding of FRP/Cover delamination.

Page 21 of 34

Identification Number of the test report: DowAksa-BFT-01

Report Date: 04.19.16

Photographs:

Sample ID#

Test setup

Beam Failure

Conclusion:

Testing data indicated in this report verified the design equations and assumptions outlined in the International Code Council Acceptance Criteria (ICC-ES-AC125) for the engineering analysis of the concrete beams flexurally strengthened, using DowAksa CarbonWrapTM fiber reinforced composite system.

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

Appendix 1

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118 Tucson, AZ 85721

Tucson, AZ 85721 Tel: 520-621-0745 Fax: 520-621-2550

Report Date: 04.19.16

SCOPE OF ACCREDITATION

IAS Accreditation Number	TL-619
Accredited Entity	Ceem Structure Laboratory at the University of Arizona
Address	1209 E. 2 nd Street, Room No. 118
	Tucson, Arizona 85721-0072
Contact Name	Dr. Ehsan Mahmoudabadi
Telephone	(520) 621-0745
Effective Date of Scope	January 11, 2015

FIELDS OF TESTING	ACCREDITED TEST METHODS
Construction Materials Testing	ASTM C 39
-	ASTM C 78
	ASTM C 293
	ASTM C 617
	ASTM C 1609
	Test methods referenced in Section 5.0 of ICC ES AC125 (Sections 5.1 to 5.8)
	Test methods referenced in Section 9 of ICC ES AC178
	Test methods referenced in Sections 3.0, 4.2.3, 4.3.4,
	4.3, 4.7 and 5.0 of ICC ES AC434
Composites	ASTM D 3039
	ASTM D 7205
	ASTM D 7565
	ACI 440.3R (Except Part B.6)
Physical Testing of Structural Assemblies	ASTM D 2344
	ASTM D 3165
	ASTM D 3528
	ASTM D 4541
	Test methods referenced in Section 5.0 of ICC ES
	AC125 (Sections 5.1 to 5.8)
	Test methods referenced in Section 9 of ICC ES AC178
	Test methods referenced in Sections 3.0, 4.2.3, 4.2.4, 4.3, 4.7 and 5.0 of ICC ES AC434

Page 2 of 2 TL-619, CEEM STRUCTURE LABORATORY AT THE UNIVERSITY OF ARIZONA

5-12065

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

Appendix 2

DOWAKSA				
Product Technical Information				
DowAksa CFU20T Car Medium Weight Unidirectiona	bon Fabric I Fabric			
Description				
DowAksa CFU20T is a medium weight, high ter Resin System and can be installed using the "w is a NSF/ANSI Standard 61 listed product for dr	nsile strength unidirectional carbo et lay-up" technique. This fabric h inking water systems (see water	n fabric. It easily wets out as excellent mechanical p system requirements below	with CarbonBond [™] 30 roperties as listed bel w).	00-HT Saturant low. This system
Annliantiano	,			
Applications CFU20T Carbon Fabric is designed to fabricate	on-site composite reinforcement	to a variety of structures	and substrates:	
 Flexural and shear reinforcement of beams 	on-site composite remotement	to a vallety of structures	and substrates.	
 In-plane and out-of-plane reinforcement of e Column wrapping and reinforcement of slab 	concrete and masonry walls			
 Structural steel applications 				
CEU20T Ca	rbon Fiber (Composite	Laminate Prope	rties)	
010201 04			nies,	
				_
Property ⁽¹⁾	Average	Value Design Valu	ue Method	_
Property ⁽¹⁾ Tensile Strength (Elengation at Brask	Average Ksi) 216.5	Value Design Valu 179.06	Method	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus ()	Average Ksi) 216.5 (%) 1.5 (si) 162	Value Design Valu 179.06 1.3 14.8	ASTM D3039	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (M Thickness (in)	Average Ksi) 216.5 (%) 1.5 (si) 16.2 0.035 0.035	Value Design Valu 179.06 1.3 14.8	ASTM D3039	_
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient	Average Ksi) 216.5 (%) 1.5 Isi) 16.2 0.035 0.035 of Linear 0.5	Value Design Valu 179.08 1.3 14.8	ASTM D3039	_
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Terseverse Coefficient	Average Ksi) 216.5 (%) 1.5 tsi) 16.2 0.035 0.035 of Linear 0.5 0 ⁴ F ⁻¹) 0.5	Value Design Valu 179.08 1.3 14.8	ASTM D3039	_
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1	Average Ksi) 216.5 (%) 1.5 tsi) 16.2 0.035 0.035 of Linear 0.5 of Linear 0.6 of Einear 29.7	Value Design Valu 179.08 1.3 14.8	ASTM D3039	_
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorction (1	Average Ksi) 216.5 (%) 1.5 tsi) 16.2 0.035 0.035 of Linear 0.5 of Linear 29.7 %) 29.7	Value Design Valu 179.08 1.3 14.8	ASTM D3039	_
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours	Average Ksi) 216.5 (%) 1.5 tsi) 16.2 of Linear 0.35 of Linear 0.5 of Linear 29.7 %) 0.29%	Value Design Valu 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831	-
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours	Average Ksi) 216.5 (%) 1.5 tsi) 16.2 0.035 0.035 of Linear 0.5 of Linear 29.7 %) 0.29% 0.70% 0.70%	Value Design Valu 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570	-
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (M Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours	Average Ksi) 216.5 (%) 1.5 isi) 16.2 0.035 0.035 of Linear 0.5 0 ⁴ F ⁻¹) 0.5 %) 0.29.7 0.70% 0.70% D 85	Value Design Valu 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240	-
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (M Thickness (in) Longitudinal Coefficient (Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (⁵	Average Ksi) 216.5 (%) 1.5 16.2 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.70% D 85 (F) 210	Value Design Val 179.06 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in) Longitudinal Coefficient (Thermal Expansion (1 Trasnverse Coefficient (Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (⁶ HDT (°F)	Average Ksi) 216.5 (%) 1.5 1si) 16.2 of Linear 0.035 of F ⁻¹) 0.5 of E ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0 D 85 (F) 210	Value Design Val 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (N Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (1 HDT (°F)	Average Ksi) 216.5 (%) 1.5 Isi) 16.2 0.035 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 0 ⁴ F ⁻¹) 29.7 %) 0.29% 0.70% 0.29% D 85 (F) 210 572 572	Value Design Valu 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (k Thickness (in) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient o Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (1 HDT (°F)	Average Ksi) 216.5 (%) 1.5 isi) 16.2 0.035 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 0 ⁴ F ⁻¹) 0.70% 0.29% 0.70% D 85 F) 210 572 572	Value Design Valu 179.06 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM E831 ASTM D570 ASTM D2240 ASTM E1040 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (k Thickness (in)) Longitudinal Coefficient Thermal Expansion (1 Trasnverse Coefficient of Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours 168 Hours Hardness, Shore Glass Transition (HDT (°F) 1) Typical values and should not be construed	Average Ksi) 216.5 (%) 1.5 16.2 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 0 ⁴ F ⁻¹) 0.20% 0.70% 0.20% 0.70% 0.20% 0.70% 0.70% 0 85 F) 210 572 572	Value Design Valu 179.06 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in) Longitudinal Coefficient of Thermal Expansion (1 Trasnverse Coefficient of Thermal Expansion (1 Water Adsorption (24 Hours 108 Hours Hardness, Shore Glass Transition (⁶ HDT (^o F)	Average Ksi) 216.5 (%) 1.5 16.2 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.70% D 85 'F) 210 572 572	Value Design Valu 179.06 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D570 ASTM D2240 ASTM E1840 ISO 75-1	
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in) Longitudinal Coefficient (Thermal Expansion (1 Trasnverse Coefficient (Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (5 HDT (°F)	Average Ksi) 216.5 (%) 1.5 16.2 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 0 ⁴ F ⁻¹) 0.29% 0.70% 0.70% D 85 (F) 210 572 572	Value Design Valu 179.06 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (M Thickness (in) Longitudinal Coefficient (Thermal Expansion (1 Trasnverse Coefficient (Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (1 HDT (°F)	Average Ksi) 216.5 (%) 1.5 16.2 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 0 ⁴ F ⁻¹) 0.29% 0.70% 0.29% 0.70% 0.5 F) 210 572 34 s specifications.	Value Design Val 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D570 ASTM D2240 ISO 75-1	
Property ⁽⁴⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in) Longitudinal Coefficient of Thermal Expansion (1 Trasnverse Coefficient of Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours 168 Hours Hardness, Shore Glass Transition (1 HDT (°F)	Average Ksi) 216.5 (%) 1.5 16.1 0.035 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.70% D 85 F) 210 572 572	Value Design Val 179.08 1.3 14.8 	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in)) Longitudinal Coefficient : Thermal Expansion (1 Trasnverse Coefficient : Thermal Expansion (1 Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (* HDT (*F)	Average Ksi) 216.5 (%) 1.5 lsi) 16.2 of Linear 0.035 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 0 ⁴ F ⁻¹) 0.20% 0.70% 0.20% 0 85 (F) 210 572 572	Value Design Val 179.08 1.3 14.8 	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (h Thickness (in) Longitudinal Coefficient (Thermal Expansion (1) Trasnverse Coefficient (Thermal Expansion (1) Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (* HDT (°F)	Average Ksi) 216.5 (%) 1.5 lsi) 16.2 0.035 0.035 of Linear 0.35 0 ⁴ F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.29% 0.70% 0.572 %) 572 d as specifications. 572	Value Design Val 179.08 1.3 14.8	ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D2240 ASTM E1640 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (M Thickness (in) Longitudinal Coefficient of Thermal Expansion (1) Trasnverse Coefficient of Thermal Expansion (1) Water Adsorption (24 Hours 168 Hours Hardness, Shore Glass Transition (1) HDT (°F) 1) Typical values and should not be construet	Average Ksi) 216.5 (%) 1.5 lsi) 16.2 of Linear 0.035 of F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.29% D 85 F) 210 572 572	Value Design Val 179.08 1.3 14.8 	Method ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D570 ASTM D2240 ISO 75-1	
Property ⁽¹⁾ Tensile Strength (Elongation at Break Tensile Modulus (k Thickness (in) Longitudinal Coefficient : Thermal Expansion (1 Trasnverse Coefficient (Trasnverse Coefficient (Trasnverse Coefficient (Trasnverse Coefficient (Trasnverse Coefficient (24 Hours 168 Hours 168 Hours Hardness, Shore Glass Transition (¹ HDT (°F) 1) Typical values and should not be construe	Average Ksi) 216.5 (%) 1.5 Isi) 16.2 0.035 0.035 of Linear 0.035 0* F ⁻¹) 0.5 of Linear 29.7 %) 0.29% 0.70% 0.70% D 85 'F) 210 572 572	Value Design Val 179.08 1.3 14.8 	Method ASTM D3039 ASTM D3039 ASTM E831 ASTM D570 ASTM D570 ASTM D2240 ISO 75-1	

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

1209 E 2nd Street, Room 118 Tucson, AZ 85721 Tel: 520-621-0745 Fax: 520-621-2550

Page **27** of **34**

Report Date: 04.19.16

Report Date: 04.19.16

Appendix 3

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 04.19.16

CEEM STRUCTURE LABORATORY - TL619

Laboratory No. TL-619	FRP Tensile Test	
Client No. DACW-U20300HT	Project: DowAksa CarbonWrap	P.O. No: Dow Grant
Panel Fabrication Witnessed by: Dr.Ehsa	n Mahmoudabadi	Company: University of Arizona
Has Annex A of ICC-ES AC178, or similar	document, been completed by an inspector?	Yes 🗙 No

Description:

Test Type: Material Properties Tests (Tensile Strength/Modulus/Elongation)

Standard Test Method: ASTM D3039

<u>Sample Preparation</u>: $1^{"}\times 12^{"}$ Coupans were extracted from $24^{"}\times 24^{"}$ test panel fabricated and allowed to be cured at the testing facility location.

Material Type and Specification: Unidirectional 20 ounce Fabric (CFU-20T) Saturated by DowAksa Carbon bond 300 high temperature epoxy resin (CB300-HT)

Test Machine: MTS Load Frame 311.31, Model: 298-12C, S.N.: 0296674, 10 data points per Second at 0.05 inch/min test speed.

	Width	Thickness	Average	Ultimate	Force Per	Composite	Elong.	Composite MOE	Failure Mode
Sample ID	(in)	(in)	Area (in2)	Load	Unit Width	Strength	(%)	(Msi)	
				(lbf)	(lbf/in)	(ksi)			
CFU-20T-M1	0.998	0.0345	0.0344	7990	8006	232.1	0.015	16.00	AGM
CFU-20T-M2	0.9985	0.0345	0.0344	6730	6740	195.36	0.015	16.44	AGM
CFU-20T-M3	1.000	0.0345	0.0345	7450	7450	215.94	0.016	15.52	SGM
CFU-20T-M4	0.998	0.0345	0.0344	7700	7715	223.64	0.015	16.09	SGM
CFU-20T-M5	0.997	0.036	0.0359	7210	7231	200.88	0.015	15.78	SGM
CFU-20T-M6	0.997	0.032	0.0319	7020	7041	220.035	0.015	16.66	LGM
CFU-20T-M7	0.997	0.0335	0.0334	7799	7822	233.51	0.016	16.63	AGM
CFU-20T-M8	0.998	0.037	0.0369	7780	7796	210.69	0.0147	16.48	М
CFU-20T-M9	0.994	0.0365	0.0363	8185	8234	225.6	0.0156	16.32	М
CFU-20T-M10	0.993	0.035	0.0347	7529	7582	216.6	0.017	16.48	LWT

CEEM STRUCTURE LABORATORY - TL619

1209 E 2nd Street, Room 118 Tucson, AZ 85721 Tel: 520-621-0745 Fax: 520-621-2550 *The results presented in this report relate only to the item(s) tested.*

This report can be reproduced only in its entirety unless written permission from TL-619 is obtained.

Sample pertaining to this report will be discarded 30 days from the date of this report unless otherwise advised.

Report Date: 11/24/2015 Test Date: 11/21/2015

Client No. DACW-U20300HT

Laboratory No. TL-619

Project: DowAksa CarbonWrap

FRP Tensile Test

P.O. No: Dow Grant

Sample ID	Width ₁ (in)	Thickness ₁ (in)	Average Area (in2)	Ultimate Load (lbf)	Force Per Unit Width (lbf/in)	Composite Strength (ksi)	Elong. (%)	Composite MOE (Msi)	Failure Mode
CFU-20T-M11	0.999	0.0325	0.0325	6820	6827	210.056	0.015	17.59	М
CFU-20T-M12	0.993	0.0375	0.0372	8360	8419	224.5	0.015	16.39	SGM
CFU-20T-M13	1.002	0.0365	0.0365	8240	8223	225.3	0.014	16.3	LGM
CFU-20T-M14	0.998	0.0355	0.0354	7990	8006	225.52	0.0165	16.4	XVV
CFU-20T-M15	0.995	0.036	0.0358	8000	8040	223.34	0.017	15.74	М
CFU-20T-M16	0.987	0.0365	0.036	7400	7497	205.41	0.015	16.51	LAT
CFU-20T-M17	0.997	0.037	0.0369	8920	8947	241.81	0.016	16.06	LGM
CFU-20T-M18	0.989	0.0345	0.0341	7530	7614	220.69	0.017	15.81	М
CFU-20T-M19	1.017	0.037	0.0376	7420	7296	197.19	0.0142	15.8	SGM
CFU-20T-M20	0.996	0.037	0.0368	7700	7731	208.94	0.0145	15.55	LAT
CFU-20T-M21	0.999	0.036	0.0359	6810	6817	189.36	0.0157	16.05	М
Average	0.997	0.0354	0.0353	7647	7668	216.5	0.0154	16.22	
Standard Deviation	0.0057	0.0015	0.00156	555.19	563.2	12.48	0.000896	0.47	
COV	0.57%	4.3%	4.4%	7.2%	5.98%	5.7%	5.8%	2.9%	

Results reported to DowAksa CarbonWrap.

Notes:

- 1- Based on average of three readings
 - Panel Not conditioned.
 - CarbobBond 300 was used for tab bonding.
 - CFL-4-50 laminate was used for tabs.
 - Extensometer was placed equidistant from tabs.

Tel: 520-621-0745

Fax: 520-621-2550

This report can be reproduced only in its entirety unless written permission from TL-619 is obtained.

Sample pertaining to this report will be discarded 30 days from the date of this report unless otherwise advised.

Test Report on DowAksa CFRP system

General:

This report is prepared in order to provide the necessary information and data to obtain approval of DowAksa Carbon Fiber Reinforcement Polymer (CFRP) System used as an externally bonded reinforcement for shear strengthening of concrete beams. The report contains experimental verification of design equations and assumptions outlined in the International Code Council Acceptance Criteria (ICC-ES-AC125) for the engineering analysis of the concrete and masonry structural members strengthened, using DowAksa CarbonWrapTM fiber reinforced composite system.

The report complies with ICC-ES-AC85.

Laboratory Information:

The CEEM Structure Laboratory at the University of Arizona (TL-619) is an accredited laboratory complying with ISO/IES Standard 17025 by the international Accreditation Service (IAS). The scope of the laboratory's accreditation includes the specific type of testing covered in this report.

Laboratory accreditation certification is attached to the end of this report (Appendix I). Address and phone number of the lab is indicated on footer.

Standard Test Method: According to ICC-ES-AC125 criteria

Description of tested product:

- DowAksa CFU20T Carbon Fabric, Medium Weight Uniderectional Fabric,
- CarbonBondTM 300-HT Saturant Resin System.

DowAksa CFU20T Carbon Fabric is attached to the soffit of the beam in order to increase the flexural capacity of the concrete member so that the sample fails in shear. This Fabric is attached to the concrete using DowAksa epoxy system called CarbonBondTM 300-HT Saturant Resin System. Properties of these materials are attached to this report (Appendix II). This sample is considered as control sample. The shear strength of member can be improved by wrapping the FRP system around three sides of the member (U-wrap). DowAksa CFU20T Carbon Fabric is attached around three sides of the beam like a U-wrap for this purpose.

General installation instruction provided by DowAksa is also attached in Appendix III.

Test Description:

Concrete Beam Flexural Test, Group 1 of proposed plan

Test setup and Procedure:

The experimental justification consisted of casting four concrete beams with specification indicated in Figure.1 and Figure. 2.

Two samples with different compressive srengths were tested as control samples with four layers of CFU-20T on soffit (Figure. 1) and the remaining two were strengthened using DowAksa CFRP U-wrap (Figure. 2).

Figure 1. Beam specification for shear test, Control Sample

Page 4 of 45

Identification Number of the test report: DowAksa-BST-01 Report Date

Figure 2. Beam specification for shear test, Strengthened Sample

Specimens were loaded continuously and without shock. Load was applied at a rate that constantly increases the maximum stress on the tension face at 150 psi/min. (According to ASTM C78, this rate should be between 0.9 and 1.2 MPa/min [125 and 175 psi/min] until rupture occurs.)

The loading rate is calculated using the following equation:

$$r = \frac{Sbd^2}{L} \tag{ASTM C78-10}$$

where:

r = loading rate, N/min [lb/min],

S = rate of increase in maximum stress on the tension face, MPa/min [psi/min],

b = average width of the specimen as oriented for testing, mm [in.],

d = average depth of the specimen as oriented for testing, mm [in.], and

L = span length, mm [in.].

So, Considering S=150 psi/min, the load rating used in this test is 1.8 kip/min.

Notation:

- f_{y} : Specified yield strength of nonprestressed steel reinforcement
- ε_s : Strain level in nonprestressed steel reinforcement
- ε_y : Strain corresponding to yield strength of nonprestressed steel reinforcement
- E_s : Modulus of Elasticity of steel
- f_c' : Specified compressive strength of concrete
- E_c : Modulus of elasticity of concrete
- α_1 : Multiplier on f'_c to determine intensity of an equivalent rectangular stress distribution for concrete
- β_1 : Ratio of depth of equivalent rectangular stress block to depth of the neutral axis
- b : width of compression face of member
- c: Distance from extreme compression fiber to the neutral axis
- ε_{cu} : Ultimate axial strain of unconfined concrete
- ε_c' : Maximum strain of unconfined concrete corresponding to f_c'
- ε'_s : Strain level in nonprestressed steel reinforcement on top of the section
- A_s : Area of nonprestressed steel reinforcement
- $A_{s'}$: Area of nonprestressed steel reinforcement on top of the section
- f'_s : Stress level of steel reinforcement on top of the section
- b_f : Width of fabric
- t_f : Thickness of fabric
- A_f : Area of fabric
- E_f : Modulus of elasticity of fabric
- ε_{fd} : Debonding strain of externally bonded FRP reinforcement
- ε_{fe} : Effective strainlevel in FRP reinforcement attained at failure
- ε_{fu} : Design rupture strain of FRP reinforcement
- Ψ_f : FRP Strength reduction factor

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

Sample Information:

Sample ID#: ICC 2a.1

Date of Testing: 04.29.2016

Temperature at the time of testing: 69°F

Average Width of Beam (3 measurements): 8.00 inch

Average Depth of Beam (3 measurements): 12.05 inch

Clear Span Length: 72 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (f_c'): 3025 psi</u>	3000±500

Steel rebar grade: 60

 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Tel: 520-621-0745 Fax: 520-621-2550

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system **Thickness** = 0.0354 inch **Modulus of Elasticity** = 14800 ksi **Width of fabric** = 6 inch ε_{fu} = 1.3%

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118 Tucson, AZ 85721

Design Criteria and minimum acceptable level:

 $\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$ $f_c' = 3025 \text{ psi} \rightarrow \beta_1 = 0.85 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation:

 Σ Compression forces = Σ Tension forces

$$0.85*f_c'*b*a+f_s'*A_{s'} = f_y*A_s + (b_f.t_f). \ \varepsilon_{fe}.E_f$$
 Where $\varepsilon_{fe} = 0.003\frac{d_f-c}{c}$

Solving for $c \rightarrow c = 4.14$ inch

a = 0.85 * 2.451 = 3.519 inch

From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5-4.14}{4.14} = 0.0019 < \varepsilon_y$ O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f_c'}{n.E_f.t_f}} = 0.083 \sqrt{\frac{3.025}{4*14800*0.0354}} = 0.003153 < 0.9 \ \varepsilon_{fu} = 0.0117$$

CEEM STRUCTURE LABORATORY - TL619

From Strain diagram:

$$\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 4.14}{4.14} = 0.0057 > \varepsilon_{fd} = 0.003153$$
 N.G.

Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure: So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.003153$

From Strain Diagram: :
$$\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.003153 \frac{c}{12-c}$$

 $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.003153 \frac{c-1.5}{12-c}$

$$E_c \ (ksi) = 57\sqrt{f_c' \ (psi)} = 57\sqrt{3025} = 3135 \ ksi$$

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7 f_c'}{E_c} = 0.00164$

$$\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$$
$$\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$$

From Equilibrium Equation:

 $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$ Solving for c:

c = 3.459 inch;

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

$$\varepsilon_c = 0.003153 \frac{c}{12-c} = 0.003153 * \frac{3.459}{12-3.459} = 0.001277$$

Calculate Moment Capacity of section:

$$\mathbf{M} = f_{y} * A_{s} * (\ d - \beta_{1}. \ c \ /2) + \Psi_{f}. \ A_{f}. \ f_{fe}. \ (d - \beta_{1}. \ c \ /2) - f_{s'} * A_{s'}. \ (\ d' - \beta_{1}. \ c \ /2)$$

M = 40.25 kip.ft

Based on test setup: Max Shear load = 20.12 kips

Section Properties:

$$V_c = 2.\sqrt{f_c'}.b.d = 2 \times \sqrt{3025} \times 8 * 10.5 = 9.24$$
 kips

 $V_s = \frac{A_{v} \cdot f_{sd} \cdot d}{s} = 0.22*60*10.5/16 = 8.66$ kips

So, $V_n = 17.86$ kips

Max Shear = 20.12 kips > Shear capacity of section = 17.86 kips \rightarrow Shear enhancement is needed.

Based on Analysis, Failure load of sample 2a.1 must be $17.86 \times 2 = 35.72$ kips

Report Date: 05.24.16

Mesured results:

Load at Failure: 36.11 kips

Figure 3. Load-Deflection Curve- ICC 2a.1 Sample

Failure Mode:

Shear Failure.

Mode of failure was confirmed.

Page 12 of 45

Identification Number of the test report: DowAksa-BST-01

Report Date: 05.24.16

Photographs:

(a)

(b)

(c)

Figure 4. (a) Sample ID #, (b) Test setup, (c) Failure of beam

Report Date: 05.24.16

Sample Information:

Sample ID#: ICC 2a.2

Temperature at the time of testing: 71.5°F

<u>Date of Testing:</u> 05.06.2016

Average Width of Beam: 8.0 inch

Average Depth of Beam: 12.0 inch

Clear Span Length: 72 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (f_c'): 2804 psi</u>	3000±500

Steel rebar grade: 60

 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Tel: 520-621-0745 Fax: 520-621-2550

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system **Thickness** = 0.0354 inch **Modulus of Elasticity** = 14800 ksi **Width of fabric** = 6 inch ε_{fu} = 1.3%

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118 Tucson, AZ 85721

Design Criteria and minimum acceptable level:

 $\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$ $f_c' = 2804 \text{ psi} \rightarrow \beta_1 = 0.85 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation:

 Σ Compression forces = Σ Tension forces

$$0.85*f_c'*b*a+f_s'*A_{s'} = f_y*A_s + (b_f.t_f). \ \varepsilon_{fe}.E_f$$
 Where $\varepsilon_{fe} = 0.003\frac{d_f-c}{c}$

Solving for $c \rightarrow c = 4.267$ inch

$$a = 0.85*4.267 = 3.627$$
 inch

From Strain Diagram:
$$\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5 - 4.267}{4.267} = 0.00194 < \varepsilon_y$$
 O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f_c'}{n.E_f.t_f}} = 0.083 \sqrt{\frac{2.804}{4*14800*0.0354}} = 0.003036 < 0.9 \ \varepsilon_{fu} = 0.0117$$

CEEM STRUCTURE LABORATORY - TL619

From Strain diagram:

$$\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 4.267}{4.267} = 0.00544 > \varepsilon_{fd} = 0.003036$$
 N.G.
Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure:
So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.003036$

From Strain Diagram: :
$$\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.003036 \frac{c}{12-c}$$

 $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.003036 \frac{c-1.5}{12-c}$

$$E_c \ (ksi) = 57\sqrt{f_c' \ (psi)} = 57\sqrt{2804} = 3018 \text{ ksi}$$

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7 f_c'}{E_c} = 0.001579$

$$\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$$
$$\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$$

From Equilibrium Equation:

 $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$ Solving for c:

c = 3.538 inch;

CEEM STRUCTURE LABORATORY - TL619

$$\varepsilon_c = 0.003036 \frac{c}{12-c} = 0.003036 * \frac{3.538}{12-3.538} = 0.001269$$

Calculate Moment Capacity of section:

$$\begin{split} \mathbf{M} &= f_y * A_s * (\ d - \beta_1.\ c \ /2) + \Psi_f.\ A_f.\ f_{fe}.\ (d - \beta_1.\ c \ /2) - f_{s'} * A_{s'}.\ (\ d' - \beta_1.\ c \ /2) \\ \mathbf{M} &= 39 \ \mathrm{kip.ft} \end{split}$$

Analysis:

Based on specimen properties: Max Shear load = 19.5 kip

Section Properties:

 $V_c = 2.\sqrt{f'_c}.b.d = 2 \times \sqrt{2804} \times 8 * 10.5 = 8.89$ kips

 $V_s = \frac{A_{v.f_{sd}.d}}{s} = 0.22*60*10.5/16 = 8.66$ kips

So, $V_n = 17.55$ kips

Max Shear = 19.5 kips > Shear capacity of section = 17.55 kips \rightarrow External Shear enhancement is needed.

Page 17 of 45

To increase shear capacity of section, DowAksa Carbon fiber, CFU-20T was used with properties as below:

<u>U-wrap:</u>

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system

Thickness = 0.0354 inch

Modulus of Elasticity = 14800 ksi

Width of strips = 4 inch

Center-to-center spacing between strips = 6 inch

Number of strips layers = 1 layer

 $\varepsilon_{fu} = 1.3\%$

Shear Contribution of the FRP to shear strength

$$V_{f} = \frac{A_{fv}f_{fe}(sin\alpha + cos\alpha)d_{fv}}{s_{f}}$$
Where $A_{fv} = 2nt_{f}w_{f} = 2 \times 1 \times 0.0354^{*}4 = 0.2832 \ in^{2}$
 $f_{fe} = \varepsilon_{fe}E_{f}$
 $\varepsilon_{fe} = \kappa_{v}.\varepsilon_{fu} \le 0.004$ for 3-sides (U-wrapped) members
 $\kappa_{v} = \frac{k_{1}k_{2}L_{e}}{486\varepsilon_{fu}} \le 0.75$
 $k_{1} = (\frac{f'_{c}}{4000})^{2/3} = (\frac{2804}{4000})^{2/3} = 0.789$
 $k_{2} = \frac{d_{fv}-L_{e}}{d_{fv}}$ for U-wrapped
 $L_{e} = \frac{2500}{(n_{f}t_{f}E_{f})^{0.58}} = \frac{2500}{(1*0.0354*14800)^{0.58}} = 1.204 \rightarrow k_{2} = \frac{d_{fv}-L_{e}}{d_{fv}} = \frac{8.5-1.204}{8.5} = 0.8583$
 $\rightarrow \kappa_{v} = \frac{k_{1}k_{2}L_{e}}{486\varepsilon_{fu}} = \frac{0.789 \times 0.8583 \times 1.204}{486 \times 0.013} = 0.129 \le 0.75$ O.K.

CEEM STRUCTURE LABORATORY - TL619

$$\rightarrow \varepsilon_{fe} = \kappa_v \cdot \varepsilon_{fu} = 0.129 \times 0.013 = 0.00167 \le 0.004$$
 O.K.

$$V_f = \frac{A_{fv} f_{fe}(sin\alpha + cos\alpha) d_{fv}}{s_f} = \frac{0.2832 \times (0.00167 \times 14800) \times 1 \times 8.5}{6} = 9.91$$
 kips

Controls:

 $V_{s} + V_{f} = 8.66 \text{ kips} + 9.91 \text{ kips} = 18.57 \text{ kips} \le 8. \sqrt{f_{c}'} \cdot b.d = 8 \times \sqrt{2804} \times 8 \times 10.5 = 35.58 \text{ kips} \quad O.K.$ Center-to-center spacing between strips = 6 inch $<\frac{d}{4}$ + width of the strip= $\frac{10.5}{4}$ + 4 = 6.625 inch O.K. $V_{c} + V_{s} + \Psi_{f}V_{f} = 8.89 + 8.66 + 0.85 * 9.91 = 25.97$ > shear capacity of section with 4-layers of CFU-20T = 19.5 kips O.K.

Analysis

Load at failure = 39 kips

Measured Results:

Load at Failure: 39.1 kips

Load-Deflection curve:

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

Failure Mode:

Mode of failure was confirmed.

FRP controled the failure/ Cover delamination.

Photographs:

(a)

(b)

(c)

Figure 6. (a) Sample ID #, (b) Test setup, (c) Failure of beam

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

Sample Information:

Sample ID#: ICC 2b.1

Date of Testing: 05.09.2016

Temperature at the time of testing: 76.3°F

Average Width of Beam (3 measurements): 8.00 inch

Average Depth of Beam (3 measurements): 12.0 inch

Clear Span Length: 72 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (f_c'): 5610 psi</u>	6000 ± 500

Steel rebar grade: 60

 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Tel: 520-621-0745 Fax: 520-621-2550

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system **Thickness** = 0.0354 inch **Modulus of Elasticity** = 14800 ksi **Width of fabric** = 6 inch ε_{fu} = 1.3%

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118 Tucson, AZ 85721

Design Criteria and minimum acceptable level:

 $\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$ $f_c' = 5610 \text{ psi} \rightarrow \beta_1 = 0.7695 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation:

 Σ Compression forces = Σ Tension forces

$$0.85*f_c'*b*a+f_s'*A_{s'} = f_y*A_s + (b_f.t_f). \ \varepsilon_{fe}.E_f$$
 Where $\varepsilon_{fe} = 0.003\frac{d_f-c}{c}$

Solving for $c \rightarrow c = 3.373$ inch

From Strain Diagram:
$$\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5 - 3.373}{3.373} = 0.00166 < \varepsilon_y$$
 O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f_c'}{n.E_f.t_f}} = 0.083 \sqrt{\frac{5.610}{4*14800*0.0354}} = 0.00429 < 0.9 \ \varepsilon_{fu} = 0.0117$$

CEEM STRUCTURE LABORATORY - TL619

From Strain diagram:

$$\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 3.373}{3.373} = 0.00767 > \varepsilon_{fd} = 0.00429$$
 N.G.
Since $\varepsilon_c > \varepsilon_{c}$. CERP strain governs the equations and controls the

Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure: So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.00429$

From Strain Diagram: :
$$\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.00429 \frac{c}{12-c}$$

 $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.00429 \frac{c-1.5}{12-c}$

$$E_c \ (ksi) = 57\sqrt{f_c' \ (psi)} = 57\sqrt{5610} = 4269 \ \text{ksi}$$

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7 f_c'}{E_c} = 0.00223$

$$\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$$
$$\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$$

From Equilibrium Equation:

 $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$ Solving for c: c = 2.89 inch;

CEEM STRUCTURE LABORATORY - TL619

$$\varepsilon_c = 0.00429 \frac{c}{12-c} = 0.00429 * \frac{2.89}{12-2.89} = 0.00136$$

Calculate Moment Capacity of section:

$$\mathbf{M} = f_{y} * A_{s} * (d - \beta_{1}. c/2) + \Psi_{f}. A_{f}. f_{fe}. (d - \beta_{1}. c/2) - f_{s'} * A_{s'}$$

M = 52.2 kip.ft

Based on test setup and specimen properties: Max Shear load = 26.1 kips

Section Properties:

$$V_c = 2.\sqrt{f_c'}.b.d = 2 \times \sqrt{5610} \times 8 * 10.5 = 12.58$$
 kips

 $V_s = \frac{A_{v.f_{sd}.d}}{s} = 0.22*60*10.5/16 = 8.66$ kips

So, $V_n = 21.24$ kips

Max Shear = 26.1 kips > Shear capacity of section = 21.24 kips \rightarrow External Shear enhancement is needed.

Based on Analysis, Failure load of sample 2b.1 must be $21.24 \times 2 = 42.4$ kips

Report Date: 05.24.16

Mesured results:

Load at Failure: 42.1 kips

Figure 7. Load-Deflection Curve- ICC 2b.1 Sample

Failure Mode:

Shear Failure.

Mode of failure was confirmed.

Report Date: 05.24.16

Photographs:

(a)

(c)

Figure 8. (a) Sample ID #, (b) Test setup, (c) Failure of beam

Report Date: 05.24.16

Sample Information:

Sample ID#: ICC 2b.2

Temperature at the time of testing: 75.8°F

<u>Date of Testing:</u> 05.10.2016

Average Width of Beam: 8.0 inch

Average Depth of Beam: 12.0 inch

Clear Span Length: 72 inch

Concrete Compressive Strength:

Test Specimen	Proposal information
<u>Average Compressive Strength of five sample (f_c'): 5517 psi</u>	6000 ± 500

Steel rebar grade: 60

 $f_y = 60,000 \text{ ksi}, \quad f_u = 90,000 \text{ ksi}$

CFRP properties:

Tel: 520-621-0745 Fax: 520-621-2550

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system **Thickness** = 0.0354 inch **Modulus of Elasticity** = 14800 ksi **Width of fabric** = 6 inch ε_{fu} = 1.3%

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118 Tucson, AZ 85721

Design Criteria and minimum acceptable level:

 $\varepsilon_y = \frac{f_y}{E_s} = 60,000/29,000,000 = 0.00207$ $f_c' = 5517 \text{ psi} \rightarrow \beta_1 = 0.774 \rightarrow a = \beta_1.c$

Assume:

- Concrete reaches ε_{cu} before FRP reaches ε_{fd} .
- Steel yields before concrete crushes.

From Equilibrium Equation:

 Σ Compression forces = Σ Tension forces

$$0.85*f_c'*b*a+f_s'*A_{s'} = f_y*A_s + (b_f.t_f). \ \varepsilon_{fe}.E_f$$
 Where $\varepsilon_{fe} = 0.003\frac{d_f-c}{c}$

Solving for $c \rightarrow c = 3.388$ inch

a = 0.774 * 3.388 = 2.622 inch

From Strain Diagram: $\frac{\varepsilon_{cu}}{c} = \frac{\varepsilon'_s}{c-d'} \rightarrow \varepsilon'_s = 0.003 * \frac{1.5-3.388}{3.388} = 0.00167 < \varepsilon_y$ O.K.

$$\varepsilon_{fd} = 0.083 \sqrt{\frac{f_c'}{n.E_f.t_f}} = 0.083 \sqrt{\frac{5.517}{4*14800*0.0354}} = 0.00426 < 0.9 \ \varepsilon_{fu} = 0.0117$$

CEEM STRUCTURE LABORATORY - TL619

From Strain diagram:

$$\varepsilon_{fe} = 0.003 \frac{d_f - c}{c} = 0.003 * \frac{12 - 3.388}{3.388} = 0.00762 > \varepsilon_{fd} = 0.00426$$
 N.G.
Since $\varepsilon_{fe} > \varepsilon_{fd}$, CFRP strain governs the equations and controls the failure:
So,

 $\varepsilon_{fe} = \varepsilon_{fd} = 0.00426$

From Strain Diagram: :
$$\frac{\varepsilon_{fe}}{\varepsilon_c} = \frac{12-c}{c} \rightarrow \varepsilon_c = 0.00426 \frac{c}{12-c}$$

 $\frac{\varepsilon_{fe}}{12-c} = \frac{\varepsilon'_s}{c-1.5} \rightarrow \varepsilon'_s = 0.00426 \frac{c-1.5}{12-c}$

$$E_c (ksi) = 57\sqrt{f_c' (psi)} = 57\sqrt{5517} = 4233.76$$
 ksi

Concrete Stress Block $\rightarrow \varepsilon_c' = \frac{1.7 f_c'}{E_c} = 0.00221$

$$\beta_1 = \frac{4\varepsilon_c' - \varepsilon_c}{6\varepsilon_c' - 2\varepsilon_c}$$
$$\alpha_1 = \frac{3\varepsilon_c'\varepsilon_c - \varepsilon_c^2}{3\beta_1{\varepsilon_c'}^2}$$

From Equilibrium Equation:

 $\alpha_1. f_c'. \beta_1. c. b + (E_s. \varepsilon_s'). A_s = f_y. A_s + A_f. (E_f. \varepsilon_{fe})$ Solving for c:

c = 2.9035 inch;

CEEM STRUCTURE LABORATORY - TL619

$$\varepsilon_c = 0.00426 \, \frac{c}{12 - c} = 0.00426 * \frac{2.9035}{12 - 2.9035} = 0.001359$$

Calculate Moment Capacity of section:

$$M = f_y * A_s * (d - \beta_1 . c / 2) + \Psi_f . A_f . f_{fe} . (d - \beta_1 . c / 2) - f_{s'} * A_{s'} . (d' - \beta_1 . c / 2)$$

M = 51.8 kip.ft

Analysis:

Based on specimen properties: Max Shear load = 25.9 kip

Section Properties:

 $V_c = 2.\sqrt{f'_c}.b.d = 2 \times \sqrt{5517} \times 8 * 10.5 = 12.48$ kips

 $V_s = \frac{A_{v.f_{sd}.d}}{s} = 0.22*60*10.5/16 = 8.66$ kips

So, $V_n = 21.13$ kips

Max Shear = 25.9 kips > Shear capacity of section = 21.13 kips \rightarrow External Shear enhancement is needed.

Page 30 of 45

To increase shear capacity of section, DowAksa Carbon fiber, CFU-20T was used with properties as below:

<u>U-wrap:</u>

Type: DowAksa Unidirectional 20 ounce Fabric Saturated with DowAksa CarbonBond 300HT epoxy system

Thickness = 0.0354 inch

Modulus of Elasticity = 14800 ksi

Width of strips = 4 inch

Center-to-center spacing between strips = 6 inch

Number of strips layers = 1 layer

 $\varepsilon_{fu} = 1.3\%$

Shear Contribution of the FRP to shear strength

$$V_{f} = \frac{A_{fv}f_{fe}(sin\alpha + cos\alpha)d_{fv}}{s_{f}}$$
Where $A_{fv}=2nt_{f}w_{f} = 2 \times 1 \times 0.0354^{*}4 = 0.2832 \ in^{2}$
 $f_{fe}=\varepsilon_{fe}E_{f}$
 $\varepsilon_{fe} = \kappa_{v}.\varepsilon_{fu} \le 0.004 \ for 3 \text{-sides (U-wrapped) members}$
 $\kappa_{v} = \frac{k_{1}k_{2}L_{e}}{486\varepsilon_{fu}} \le 0.75$
 $k_{1} = (\frac{f'_{c}}{4000})^{2/3} = (\frac{5517}{4000})^{2/3} = 1.239$
 $k_{2} = \frac{d_{fv}-L_{e}}{d_{fv}} \ for \ U\text{-wrapped}$
 $L_{e} = \frac{2500}{(n_{f}t_{f}E_{f})^{0.58}} = \frac{2500}{(1*0.0354*14800)^{0.58}} = 1.204 \rightarrow k_{2} = \frac{d_{fv}-L_{e}}{d_{fv}} = \frac{8.5 - 1.204}{8.5} = 0.8583$
 $\rightarrow \kappa_{v} = \frac{k_{1}k_{2}L_{e}}{486\varepsilon_{fu}} = \frac{1.239 \times 0.8583 \times 1.204}{486 \times 0.013} = 0.2 \le 0.75$ O.K.

CEEM STRUCTURE LABORATORY - TL619

$$\rightarrow \varepsilon_{fe} = \kappa_v \cdot \varepsilon_{fu} = 0.2 \times 0.013 = 0.00263 \le 0.004 \quad \text{O.K.}$$

$$V_f = \frac{A_{fv} f_{fe}(sin\alpha + cos\alpha) d_{fv}}{s_f} = \frac{0.2832 \times (0.00263 \times 14800) \times 1 \times 8.5}{6} = 15.64 \text{ kips}$$

Controls:

 $V_s + V_f = 8.66 \text{ kips} + 15.64 \text{ kips} = 24.3 \text{ kips} \le 8. \sqrt{f'_c} \cdot b.d = 8 \times \sqrt{5517} \times 8 \times 10.5 = 49.9 \text{ kips}$ O.K. **Center-to-center spacing between strips** = 6 inch $<\frac{d}{4}$ + width of the strip= $\frac{10.5}{4}$ + 4 = 6.625 inch O.K. $V_c + V_s + \Psi_f V_f = 12.48 + 8.66 + 0.85 \times 15.64 = 34.43$ > shear capacity of section with 4-layers of CFU-20T = 25.9 kips O.K.

Analysis

Load at failure = 51.8 kips

Measured Results:

Load at Failure: 51.5 kips

Load-Deflection curve:

Figure 9. Load-Deflection Curve- ICC 2b.2 Sample

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

Failure Mode:

Mode of failure was confirmed. FRP controled the failure/ Cover delamination.

Photographs:

(a)

(c)

Figure 10. (a) Sample ID #, (b) Test setup, (c) Failure of beam

CEEM STRUCTURE LABORATORY - TL619

Page 33 of 45

Conclusion:

Testing data reported here verified the design equations and assumptions outlined in the International Code Council Acceptance Criteria (ICC-ES-AC125) for the engineering analysis of concrete beams strengthened for shear, using DowAksa CarbonWrapTM fiber reinforced composite system.

CEEM STRUCTURE LABORATORY - TL619

Page 34 of 45

Identification Number of the test report: DowAksa-BST-01

Report Date: 05.24.16

Appendix 1

ACCREDITED

Report Date: 05.24.16

SCOPE OF ACCREDITATION

IAS Accreditation Number	TL-619
Accredited Entity	Ceem Structure Laboratory at the University of Arizona
Address	1209 E. 2 nd Street, Room No. 118
	Tucson, Arizona 85721-0072
Contact Name	Dr. Ehsan Mahmoudabadi
Telephone	(520) 621-0745
Effective Date of Scope	January 11, 2015

FIELDS OF TESTING	ACCREDITED TEST METHODS
Construction Materials Testing	ASTM C 39
-	ASTM C 78
	ASTM C 293
	ASTM C 617
	ASTM C 1609
	Test methods referenced in Section 5.0 of ICC ES AC125 (Sections 5.1 to 5.8)
	Test methods referenced in Section 9 of ICC ES AC178
	Test methods referenced in Sections 3.0, 4.2.3, 4.3.4,
	4.3, 4.7 and 5.0 of ICC ES AC434
Composites	ASTM D 3039
	ASTM D 7205
	ASTM D 7565
	ACI 440.3R (Except Part B.6)
Physical Testing of Structural Assemblies	ASTM D 2344
	ASTM D 3165
	ASTM D 3528
	ASTM D 4541
	Test methods referenced in Section 5.0 of ICC ES
	AC125 (Sections 5.1 to 5.8)
	Test methods referenced in Section 9 of ICC ES AC178
	Test methods referenced in Sections 3.0, 4.2.3, 4.2.4, 4.3, 4.7 and 5.0 of ICC ES AC434

Page 2 of 2 TL-619, CEEM STRUCTURE LABORATORY AT THE UNIVERSITY OF ARIZONA

S-12065

CEEM STRUCTURE LABORATORY - TL619 1209 E 2nd Street, Room 118

Tucson, AZ 85721 Tel: 520-621-0745 Fax: 520-621-2550

Report Date: 05.24.16

Appendix 2

Property ⁽¹⁾ Average Value Design Value Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.06 Elegation at Break (%) 1.5 1.3 A Tensile Strength (Msi) 16.2 14.8 Tinkines (msi) 0.035	It easily wets out with CarbonBond [™] 300-HT Saturant ellent mechanical properties as listed below. This system requirements below). riety of structures and substrates: inate Properties) Design Value Method
Aksa CFU20T Carbon Fabric Neight Unidirectional Fabric tion FU20T is a medium weight, high tensile strength unidirectional carbon fabric. It easily wets out with Carl m and can be installed using the "wet lay-up" technique. This fabric has excellent mechanical properties (SI Standard 81 listed product for drinking water systems (see water system requirements below). tions whon Fabric is designed to fabricate on-site composite reinforcements to a variety of structures and subsci and out-of-plane reinforcement of ocncrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) Tensile Strength (Ksi) 216.5 170.08 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035 	It easily wets out with CarbonBond [™] 300-HT Saturant illent mechanical properties as listed below. This system requirements below). riety of structures and substrates: inate Properties) Design Value Method
tion FU20T is a medium weight, high tensile strength unidirectional carbon fabric. It easily wets out with Carl m and can be installed using the "wet lay-up" technique. This fabric has excellent mechanical propertiet VSI Standard 01 listed product for drinking water systems (see water system requirements below). tions whon Fabric is designed to fabricate on-site composite reinforcements to a variety of structures and sub-fabra reinforcement of beams : and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) Tensile Strength (Ksi) 216.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	It easily wets out with CarbonBond [™] 300-HT Saturant ellent mechanical properties as listed below. This system requirements below). wethous and substrates: inate Properties) Design Value Method
tron FUOD is a medium weight, high tensile strength unidirectional carbon fabric. It easily wets out with Carl me and can be installed using the "wet lay-up" technique. This fabric has excellent mechanical properties USI Standard 01 listed product for drinking water systems (see water system requirements below). tions tions tron Fabric is designed to fabricate on-site composite reinforcements to a variety of structures and substand shear reinforcement of beams and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CEFU20T Carbon Fiber (Composite Laminate Properties) Tensile Strength (Ksi) 216.5 Tensile Modulus (Msi) 1.5 1.3 Medulus (Msi) 1.5 1.3 Tensile Modulus (Msi) 1.5 1.3 Merger (Mass (m) Design Value Tensile Modulus (Msi) 1.5 1.5 1.5 1.3	It easily wets out with CarbonBond TM 300-HT Saturant ellent mechanical properties as listed below. This system requirements below). Iniety of structures and substrates: Inate Properties) Design Value Method
m and can be installed using the "wet lay-up" technique. This fabric has excellent mechanical properties VSI Standard 01 listed product for drinking water systems (see water system requirements below). tions thom Fabric is designed to fabricate on-site composite reinforcements to a variety of structures and sub- and shear reinforcement of beams and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab CFU20T Carbon Fiber (Composite Laminate Properties) CFU20T Carbon Fiber (Composite Laminate Properties) CFU20T Carbon Fiber (1.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 144.8 Thickness (in) 0.035	Illent mechanical properties as listed below. This system requirements below). Iniety of structures and substrates: Inate Properties) Design Value Method
tions whon Fabric is designed to fabricate on-site composite reinforcements to a variety of structures and sub- l and shear reinforcement of beams and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) CFU20T Carbon Fiber (2000 Steep 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	inate Properties)
Revision Fabricate on-site composite reinforcements to a variety of structures and sub: and shear reinforcement of beams and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.08 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties)
and shear reinforcement of beams and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) Tensile Strength (Ksi) 216.5 Elongation at Break (%) 1.5 1.3 Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties) Design Value Method
e and out-of-plane reinforcement of concrete and masonry walls wrapping and reinforcement of slab al steel applications CFU20T Carbon Fiber (Composite Laminate Properties) Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.08 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties) Design Value Method
Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.08 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties) Design Value Method
CFU20T Carbon Fiber (Composite Laminate Properties) Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties) Design Value Method
CFU20T Carbon Fiber (Composite Laminate Properties) Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 218.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	inate Properties) Design Value Method 179.08
Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 218.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	Design Value Method
Property ⁽¹⁾ Average Value Design Value Tensile Strength (Ksi) 216.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035 14.8	Design Value Method
Tensile Strength (Ksi) 216.5 179.06 Elongation at Break (%) 1.5 1.3 A Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035 14.8	179.06
Elongation at Break (%) 1.5 1.3 # Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	
Tensile Modulus (Msi) 16.2 14.8 Thickness (in) 0.035	1.3 ASTM D3039
Thickness (in) 0.035	14.8
	· · · · · · · · · · · · · · · · · · ·
Longitudinal Coefficient of Linear 0.5	
Thermal Expansion (10 ⁻⁸ F ⁻¹)	ASTM E831
Trasnverse Coefficient of Linear 29.7	
Thermal Expansion (10 ⁻⁹ F ⁻¹)	
Mater Advantion (9)	· · · · · · · · · · · · · · · · · · ·
water Adsorption (%)	
valuer Adsorption (%) 24 Hours 0.29%	ASTM D570
vvater Adsorption (%) 24 Hours 0.20% 168 Hours 0.70%	ASTM D570
vivater Adsorption (%) 24 Hours 0.29% 4 168 Hours 0.70% 4 4 Hardness, Shore D 85 A	ASTM D570
vivater Adsorption (%) 0.20% 24 Hours 0.20% 168 Hours 0.70% Hardness, Shore D 85 A Glass Transition (%F) 210 A	ASTM D570 ASTM D2240 ASTM E1640
	Tensile Modulus (Msi) 16.2 Thickness (in) 0.035 Longitudinal Coefficient of Linear 0.5 Thermal Expansion (10 ⁴ F ⁻¹) 0.5 Thermal Expansion (10 ⁴ F ⁻¹) 29.7

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

Page 38 of 45

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

Report Date: 05.24.16

Appendix 3

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

Report Date: 05.24.16

CEEM STRUCTURE LABORATORY - TL619

